Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the topology of the boundary of a basin of attraction

dc.contributor.authorSánchez Gabites, Jaime Jorge
dc.contributor.authorRodríguez Sanjurjo, José Manuel
dc.date.accessioned2023-06-20T09:40:18Z
dc.date.available2023-06-20T09:40:18Z
dc.date.issued2007
dc.description.abstractSuppose phi : M x R -> M is a continuous flow on a locally compact metrizable space M and K is an ( asymptotically stable) attractor. Let D =partial derivative A( K) be the boundary of the basin of attraction of K. In the present paper it will be shown how the Conley index of D plays an important role in determining the topological nature of D and allows one to obtain information about the global dynamics of phi in M.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16805
dc.identifier.doi10.1090/S0002-9939-07-08972-1
dc.identifier.issn0002-9939
dc.identifier.officialurlhttp://www.ams.org/journals/proc/2007-135-12/S0002-9939-07-08972-1/S0002-9939-07-08972-1.pdf
dc.identifier.relatedurlhttp://www.ams.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50153
dc.issue.number12
dc.journal.titleProceedings of the American Mathematical Society
dc.language.isoeng
dc.page.final4098
dc.page.initial4087
dc.publisherAmerican Mathematical Society
dc.rights.accessRightsrestricted access
dc.subject.cdu514
dc.subject.cdu515.1
dc.subject.ucmGeometría
dc.subject.ucmTopología
dc.subject.unesco1204 Geometría
dc.subject.unesco1210 Topología
dc.titleOn the topology of the boundary of a basin of attraction
dc.typejournal article
dc.volume.number135
dcterms.referencesJ. Auslander, N. P. Bhatia, and P. Seibert, Attractors in dynamical systems, Bol. Soc. Mat. Mexicana (2) 9 (1964), 55–66. N. P. Bhatia and G. P. Szego, Stability theory of dynamical systems, Die Grundlehren der mathematischen Wissenschaften, Band 161, Springer-Verlag, 1970. S. A. Bogatyı and V. I. Gutsu, On the structure of attracting compacta, Differentsialnye Uravneniya 25 (1989), no. 5, 907–909, 920. K. Borsuk, Theory of shape, Monografie Matematyczne, Tom 59, Panstwowe Wydawnictwo Naukowe, 1975 R. C. Churchill, Isolated invariant sets in compact metric spaces, J. Diff. Eq. 12 (1972), 330–352. C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, 38, American Mathematical Society, 1978 C. Conley and R. Easton, Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc. 158 (1971), no. 35–61. J. Dydak and J. Segal, Shape theory. An introduction, Lecture Notes in Mathematics, 688, Springer, 1978. R. W. Easton, Geometric methods for discrete dynamical systems, Oxford Engineering Science Series, 50, Oxford University Press, 1998. A. Giraldo, M. A. Mor´on, F. R. Ruiz del Portal, and J. M. R. Sanjurjo, Shape of global attractors in topological spaces, Nonlinear Anal. 60 (2005), no. 5, 837–847 A. Giraldo and J. M. R. Sanjurjo, On the global structure of invariant regions of flows with asymptotically stable attractors, Math. Z. 232 (1999), no. 4, 739–746. B. Gunther and J. Segal, Every attractor of a flow on a manifold has the shape of a finite polyhedron, Proc. Amer. Math. Soc. 119 (1993), no. 1, 321–329. S. Hu, Theory of retracts, Wayne State University Press, 1965. A. Kadlof, On the shape of pointed compact connected subsets of E3, Fund. Math. 115 (1983), no. 3. S. Mardesic and J. Segal, Shape theory. The inverse system approach, North–Holland Mathematical Library, 26, North–Holland Publishing Co., 1982. J. W. Milnor, Topology from the differentiable viewpoint, The University Press of Virginia, 1965. H. E. Nusse and J. A. Yorke, Characterizing the basins with the most entangled boundaries, Ergodic Theory Dynam. Systems 23 (2003), no. 3, 895–906. D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), no. 1, 1–41 J. M. R. Sanjurjo, Multihomotopy, Cech spaces of loops and shape groups, Proc. London Math. Soc. (3) 69 (1994), no. 2, 330–344. _ On the structure of uniform attractors, J. Math. Anal. Appl. 192 (1995), no. 2, 519–528. E. H. Spanier, Algebraic topology, McGraw Hill Book Co., 1966 J. E. West, Mapping Hilbert cube manifolds to ANR’s: a solution of a conjecture of Borsuk, Ann. Math. (2) 106 (1977), 1–18.
dspace.entity.typePublication
relation.isAuthorOfPublication59e9082d-866d-4344-a683-81ca8f8d841d
relation.isAuthorOfPublicationf54f1d9d-37e9-4c15-9d97-e34a6343e575
relation.isAuthorOfPublication.latestForDiscovery59e9082d-866d-4344-a683-81ca8f8d841d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodSanjurjo08.pdf
Size:
479.7 KB
Format:
Adobe Portable Document Format

Collections