Geodesic Growth of some 3-dimensional RACGs
dc.contributor.author | Antolín Pichel, Yago | |
dc.contributor.author | Foniqi, Islam | |
dc.date.accessioned | 2023-06-17T08:28:09Z | |
dc.date.available | 2023-06-17T08:28:09Z | |
dc.date.issued | 2021 | |
dc.description.abstract | We give explicit formulas for the geodesic growth series of a Right Angled Coxeter Group (RACG) based on a link-regular graph that is 4-clique free, i.e. without tetrahedrons. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.sponsorship | Ministerio de Economía, Industria y Competitividad (MINECO) | |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades (MICINN) | |
dc.description.sponsorship | Centro de Excelencia Severo Ochoa | |
dc.description.status | unpub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/72935 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/7212 | |
dc.language.iso | eng | |
dc.relation.projectID | MTM2017-82690-P | |
dc.relation.projectID | CEX2019-000904-S | |
dc.relation.projectID | SEV-2015-0554 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 519.1 | |
dc.subject.keyword | Geodesic Growth | |
dc.subject.keyword | Coxeter Groups | |
dc.subject.keyword | Right-angled Coxeter group | |
dc.subject.keyword | Rational formal power series | |
dc.subject.keyword | Link-regular | |
dc.subject.keyword | Clique | |
dc.subject.ucm | Análisis combinatorio | |
dc.subject.ucm | Grupos (Matemáticas) | |
dc.subject.unesco | 1202.05 Análisis Combinatorio | |
dc.title | Geodesic Growth of some 3-dimensional RACGs | |
dc.type | journal article | |
dcterms.references | [1] Yago Antolín and Laura Ciobanu. Geodesic growth in right-angled and even coxeter groups. European Journal of Combinatorics, 34(5):859–874, 2013. [2] Jayadev S Athreya and Amritanshu Prasad. Growth in right-angled groups and monoids. arXiv preprint arXiv:1409.4142, 2014. [3] Anders Björner and Francesco Brenti. Combinatorics of Coxeter groups, volume 231 of Graduate Texts in Mathematics. Springer, New York, 2005. [4] Brigitte Brink and Robert B. Howlett. A finiteness property and an automatic structure for Coxeter groups. Math. Ann., 296(1):179–190, 1993. [5] Laura Ciobanu and Alexander Kolpakov. Geodesic growth of right-angled Coxeter groups based on trees. J. Algebraic Combin., 44(2):249–264, 2016. [6] Michael W. Davis. The geometry and topology of Coxeter groups, volume 32 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ, 2008. [7] Carl Droms and Herman Servatius. The cayley graphs of coxeter and artin groups. Proceedings of the American Mathematical Society, 118(3):693–698, 1993. [8] Alexander Kolpakov and Alexey Talambutsa. Spherical and geodesic growth rates of right-angled Coxeter and Artin groups are Perron numbers. Discrete Math., 343(3):111763, 8, 2020. [9] Joseph Loeffler, John Meier, and James Worthington. Graph products and Cannon pairs. Internat. J. Algebra Comput., 12(6):747–754, 2002. [10] Luis Paris. Growth series of Coxeter groups. In Group theory from a geometrical viewpoint (Trieste, 1990), pages 302–310. World Sci. Publ., River Edge, NJ, 1991. [11] Robert Steinberg. Endomorphisms of linear algebraic groups. Memoirs of the American Mathematical Society, No. 80. American Mathematical Society, Providence, R.I., 1968. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | bd3bab81-47d2-4551-811a-af8ac40597c5 | |
relation.isAuthorOfPublication.latestForDiscovery | bd3bab81-47d2-4551-811a-af8ac40597c5 |
Download
Original bundle
1 - 1 of 1