Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Geodesic Growth of some 3-dimensional RACGs

dc.contributor.authorAntolín Pichel, Yago
dc.contributor.authorFoniqi, Islam
dc.date.accessioned2023-06-17T08:28:09Z
dc.date.available2023-06-17T08:28:09Z
dc.date.issued2021
dc.description.abstractWe give explicit formulas for the geodesic growth series of a Right Angled Coxeter Group (RACG) based on a link-regular graph that is 4-clique free, i.e. without tetrahedrons.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Economía, Industria y Competitividad (MINECO)
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (MICINN)
dc.description.sponsorshipCentro de Excelencia Severo Ochoa
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/72935
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7212
dc.language.isoeng
dc.relation.projectIDMTM2017-82690-P
dc.relation.projectIDCEX2019-000904-S
dc.relation.projectIDSEV-2015-0554
dc.rights.accessRightsopen access
dc.subject.cdu519.1
dc.subject.keywordGeodesic Growth
dc.subject.keywordCoxeter Groups
dc.subject.keywordRight-angled Coxeter group
dc.subject.keywordRational formal power series
dc.subject.keywordLink-regular
dc.subject.keywordClique
dc.subject.ucmAnálisis combinatorio
dc.subject.ucmGrupos (Matemáticas)
dc.subject.unesco1202.05 Análisis Combinatorio
dc.titleGeodesic Growth of some 3-dimensional RACGs
dc.typejournal article
dcterms.references[1] Yago Antolín and Laura Ciobanu. Geodesic growth in right-angled and even coxeter groups. European Journal of Combinatorics, 34(5):859–874, 2013. [2] Jayadev S Athreya and Amritanshu Prasad. Growth in right-angled groups and monoids. arXiv preprint arXiv:1409.4142, 2014. [3] Anders Björner and Francesco Brenti. Combinatorics of Coxeter groups, volume 231 of Graduate Texts in Mathematics. Springer, New York, 2005. [4] Brigitte Brink and Robert B. Howlett. A finiteness property and an automatic structure for Coxeter groups. Math. Ann., 296(1):179–190, 1993. [5] Laura Ciobanu and Alexander Kolpakov. Geodesic growth of right-angled Coxeter groups based on trees. J. Algebraic Combin., 44(2):249–264, 2016. [6] Michael W. Davis. The geometry and topology of Coxeter groups, volume 32 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ, 2008. [7] Carl Droms and Herman Servatius. The cayley graphs of coxeter and artin groups. Proceedings of the American Mathematical Society, 118(3):693–698, 1993. [8] Alexander Kolpakov and Alexey Talambutsa. Spherical and geodesic growth rates of right-angled Coxeter and Artin groups are Perron numbers. Discrete Math., 343(3):111763, 8, 2020. [9] Joseph Loeffler, John Meier, and James Worthington. Graph products and Cannon pairs. Internat. J. Algebra Comput., 12(6):747–754, 2002. [10] Luis Paris. Growth series of Coxeter groups. In Group theory from a geometrical viewpoint (Trieste, 1990), pages 302–310. World Sci. Publ., River Edge, NJ, 1991. [11] Robert Steinberg. Endomorphisms of linear algebraic groups. Memoirs of the American Mathematical Society, No. 80. American Mathematical Society, Providence, R.I., 1968.
dspace.entity.typePublication
relation.isAuthorOfPublicationbd3bab81-47d2-4551-811a-af8ac40597c5
relation.isAuthorOfPublication.latestForDiscoverybd3bab81-47d2-4551-811a-af8ac40597c5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
antolin_geodesic.pdf
Size:
336.94 KB
Format:
Adobe Portable Document Format

Collections