Fresnel diffraction effects in Fourier-transform arrayed waveguide grating spectrometer
dc.contributor.author | Rodrigo Martín-Romo, José Augusto | |
dc.contributor.author | Cheben, Pavel | |
dc.contributor.author | Alieva Krasheninnikova, Tatiana | |
dc.contributor.author | Calvo Padilla, María Luisa | |
dc.contributor.author | Scott, Alan | |
dc.contributor.author | Solheim, Brian | |
dc.contributor.author | Xu, Dan-Xia | |
dc.contributor.author | Delâge, André | |
dc.date.accessioned | 2023-06-20T10:42:22Z | |
dc.date.available | 2023-06-20T10:42:22Z | |
dc.date.issued | 2007-12-10 | |
dc.description | © 2007 Optical Society of America. The financial support of the Spanish Ministry of Education and Science under project TEC2005-02180 and ”Slab Waveguide Spatial Heterodyne Spetrometer project”, Contract 9F028-064201/007/MTB, Space Technology Development Program, Canada Space Agency are acknowledged. | |
dc.description.abstract | We present an analysis of Fourier-transform arrayed waveguide gratings in the Fresnel diffraction regime. We report a distinct spatial modulation of the interference pattern referred to as the Moire-Talbot effect. The effect and its influence in a FT AWG device is explained by deriving an original analytical expression for the modulated field, and is also confirmed by numerical simulations using the angular spectrum method to solve the Fresnel diffraction integral. We illustrate the retrieval of spectral information in a waveguide Fourier-transform spectrometer in the presence of the Moire-Talbot effect. The simulated device comprises two interleaved waveguide arrays each with 180 waveguides and the interference order of 40. It is designed with a Rayleigh spectral resolution of 0.1 nm and 8 nm bandwidth at wavelength λ~1.5 µm. We also demonstrate by numerical simulations that the spectrometer crosstalk is reduced from -20 dB to -40 dB by Gaussian apodization. | |
dc.description.department | Depto. de Óptica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Educación y Ciencia, España | |
dc.description.sponsorship | Canada Space Agency | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/25462 | |
dc.identifier.doi | 10.1364/OE.15.016431 | |
dc.identifier.issn | 1094-4087 | |
dc.identifier.officialurl | http://dx.doi.org/10.1364/OE.15.016431 | |
dc.identifier.relatedurl | http://www.opticsinfobase.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51040 | |
dc.issue.number | 25 | |
dc.journal.title | Optics Express | |
dc.language.iso | eng | |
dc.page.final | 16441 | |
dc.page.initial | 16431 | |
dc.publisher | The Optical Society Of America | |
dc.relation.projectID | TEC2005-02180 | |
dc.relation.projectID | 9F028-064201/007/MTB | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 535 | |
dc.subject.keyword | Compensation | |
dc.subject.keyword | Devices | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.title | Fresnel diffraction effects in Fourier-transform arrayed waveguide grating spectrometer | |
dc.type | journal article | |
dc.volume.number | 15 | |
dcterms.references | 1. P. Cheben, Wavelength dispersive planar waveguide devices: Echelle gratings and arrayed waveguide gratings”, in Optical Waveguides: From Theory to Applied Technologies, M. L. Calvo and V. Laksminarayanan, eds., (CRC Press, London, 2007) Chap. 5. 2. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, "A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with submicrometer aperture waveguides”, Opt. Express 15, 2299-2306 (2007). 3. P. Jacquinot, "The luminosity of spectrometers with prisms, gratings, or Fabry Perot etalons”, J. Opt. Soc. Am. 44, 761 (1954). 4. P. B. Fellgett, PhD Thesis, University of Cambridge, (1951). 5. P. Cheben, I. Powell, S. Janz, and D.-X. Xu, "Wavelength-dispersive device based on a Fourier-transform Michelson-type arrayed waveguide grating”, Opt. Lett. 30, 1824-1826 (2005). 6. J. M. Harlander, F. L. Roesler, Ch. R. Englert, J. G. Cardon, R. R. Conway, Ch. M. Brown, and J. Wimperis, "Robust monolithic ultraviolet interferometer for the SHIMMER instrument on STPSat-1”, Appl. Opt. 42, 2829-2834 (2003). 7. M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, Planar waveguide spatial heterodyne spectrometer, Proc. Photonics North Conference, 4-7 June, 2007, Ottawa, Canada. 8. P. Cheben, A. Delâge, L. Erickson, S. Janz, and D.-X. Xu, "Polarization compensation in silicon-on-insulator arrayed waveguide grating devices”, in Silicon-based and hybrid optoelectronics III, Proc SPIE 4293, 15-22 (2001). 9. P. Cheben, D.-X. Xu, S. Janz, A. Delâge, and D. Dalacu, "Birefringence compensation in silicon-on-insulator planar waveguide demultiplexers using a buried oxide layer”, Proc SPIE 4997, 181-189 (2003). 10. M. K. Smit and C. van Dam, "Phasar-based WDM-devices: principles, design, and applications”, IEEE J. Sel. Top. Quantum Electron. 2, 236 (1996). 11. D. Mendlovic, Z. Zalevsky, and N. Konforti, "Computation considerations and fast algorithms for calculating the diffraction integral”, J. Mod. Opt. 44, 407 (1997). 12. H. Hamam and J. L. De Bougrenet de la Tocnaye, "Programmable joint fractional Talbot computer-generated holograms”, J. Opt. Soc. Am. A 12, 314 (1995). 13. H. Hamam and J. L. De Bougrenet de la Tocnaye, "Efficient Fresnel transform algorithm based on fractional Fresnel diffraction”, J. Opt. Soc. Am. A 12, 1920 (1995). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f1512137-328a-4bb6-9714-45de778c1be4 | |
relation.isAuthorOfPublication | e2846481-608d-43dd-a835-d70f73a4dd48 | |
relation.isAuthorOfPublication.latestForDiscovery | e2846481-608d-43dd-a835-d70f73a4dd48 |
Download
Original bundle
1 - 1 of 1