Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Surveillance Routing of COVID-19 Infection Spread Using an Intelligent Infectious Diseases Algorithm

dc.contributor.authorGuevara Maldonado, César B.
dc.contributor.authorSantos Peñas, Matilde
dc.date.accessioned2024-12-09T14:54:57Z
dc.date.available2024-12-09T14:54:57Z
dc.date.issued2020-11-05
dc.description.abstractIn this study, the Intelligent Infectious Diseases Algorithm (IIDA) has been developed to locate the sources of infection and survival rate of coronavirus disease 2019 (COVID-19), in order to propose health care routes for population affected by COVID-19. The main goal of this computational algorithm is to reduce the spread of the virus and decrease the number of infected people. To do so, health care routes are generated according to the priority of certain population groups. The algorithm was applied to New York state data. Based on infection rates and reported deaths, hot spots were determined by applying the kernel density estimation (KDE) to the groups that have been previously obtained using a clustering algorithm together with the elbow method. For each cluster, the survival rate —the key information to prioritize medical care— was determined using the proportional hazards model. Finally, ant colony optimization (ACO) and the traveling salesman problem (TSP) optimization algorithms were applied to identify the optimal route to the closest hospital. The results obtained efficiently covered the points with the highest concentration of COVID-19 cases. In this way, its spread can be prevented and health resources optimized.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationGuevara, C., & Peñas, M. S. (2020). Surveillance routing of COVID-19 infection spread using an intelligent infectious diseases algorithm. Ieee Access, 8, 201925-201936.
dc.identifier.doi10.1109/ACCESS.2020.3036347
dc.identifier.officialurlhttps://ieeexplore.ieee.org/abstract/document/9249010
dc.identifier.urihttps://hdl.handle.net/20.500.14352/112248
dc.journal.titleIEEE Access
dc.language.isoeng
dc.page.final201936
dc.page.initial201925
dc.publisherIEEE
dc.relation.projectIDUniversidad Tecnológica Indoamérica, Research project: Inteligencia Artificial y Sistemas Interactivos - IASI (2017–2021), Centre of Mechatronics and Interactive Systems (MIST)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordClustering
dc.subject.keywordOptimization
dc.subject.keywordComputational intelligence
dc.subject.keywordCOVID-19
dc.subject.keywordHealth care
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleSurveillance Routing of COVID-19 Infection Spread Using an Intelligent Infectious Diseases Algorithm
dc.typejournal article
dc.volume.number8
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Surveillance_Routing_of_COVID-19_Infection_Spread_Using_an_Intelligent_Infectious_Diseases_Algorithm.pdf
Size:
2.55 MB
Format:
Adobe Portable Document Format

Collections