Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Predicting regions of local recurrence in glioblastomas using voxel-based radiomic features of multiparametric postoperative MRI

dc.contributor.authorCepeda, Santiago
dc.contributor.authorLuppino, Luigi Tommaso
dc.contributor.authorPérez Núñez, Ángel
dc.contributor.authorSolheim, Ole
dc.contributor.authorGarcía García, Sergio
dc.contributor.authorVelasco Casares, María
dc.contributor.authorKarlberg, Anna
dc.contributor.authorEikenes, Live
dc.contributor.authorSarabia, Rosario
dc.contributor.authorArrese, Ignacio
dc.contributor.authorZamora, Tomás
dc.contributor.authorGonzalez, Pedro
dc.contributor.authorJiménez Roldán, Luis
dc.contributor.authorKuttner, Samuel
dc.date.accessioned2024-04-26T07:57:34Z
dc.date.available2024-04-26T07:57:34Z
dc.date.issued2023-03-22
dc.description.abstractThe globally accepted surgical strategy in glioblastomas is removing the enhancing tumor. However, the peritumoral region harbors infiltration areas responsible for future tumor recurrence. This study aimed to evaluate a predictive model that identifies areas of future recurrence using a voxel-based radiomics analysis of magnetic resonance imaging (MRI) data. This multi-institutional study included a retrospective analysis of patients diagnosed with glioblastoma who underwent surgery with complete resection of the enhancing tumor. Fifty-five patients met the selection criteria. The study sample was split into training (N = 40) and testing (N = 15) datasets. Follow-up MRI was used for ground truth definition, and postoperative structural multiparametric MRI was used to extract voxel-based radiomic features. Deformable coregistration was used to register the MRI sequences for each patient, followed by segmentation of the peritumoral region in the postoperative scan and the enhancing tumor in the follow-up scan. Peritumoral voxels overlapping with enhancing tumor voxels were labeled as recurrence, while non-overlapping voxels were labeled as nonrecurrence. Voxel-based radiomic features were extracted from the peritumoral region. Four machine learning-based classifiers were trained for recurrence prediction. A region-based evaluation approach was used for model evaluation. The Categorical Boosting (CatBoost) classifier obtained the best performance on the testing dataset with an average area under the curve (AUC) of 0.81 ± 0.09 and an accuracy of 0.84 ± 0.06, using region-based evaluation. There was a clear visual correspondence between predicted and actual recurrence regions. We have developed a method that accurately predicts the region of future tumor recurrence in MRI scans of glioblastoma patients. This could enable the adaptation of surgical and radiotherapy treatment to these areas to potentially prolong the survival of these patients.
dc.description.departmentDepto. de Cirugía
dc.description.facultyFac. de Medicina
dc.description.fundingtypeDescuento UCM
dc.description.refereedTRUE
dc.description.sponsorship180°N - Norwegian Nuclear Medicine Consortium (Noruega)
dc.description.statuspub
dc.identifier.citationCepeda, S.; Luppino, L.T.; Pérez-Núñez, A.; Solheim, O.; García-García, S.; Velasco-Casares, M.; Karlberg, A.; Eikenes, L.; Sarabia, R.; Arrese, I.; et al. Predicting Regions of Local Recurrence in Glioblastomas Using Voxel-Based Radiomic Features of Multiparametric Postoperative MRI. Cancers 2023, 15, 1894. https://doi.org/10.3390/ cancers15061894
dc.identifier.doi10.3390/cancers15061894
dc.identifier.issn2072-6694
dc.identifier.officialurlhttps://doi.org/10.3390/cancers15061894
dc.identifier.relatedurlhttps://www.mdpi.com/2072-6694/15/6/1894
dc.identifier.urihttps://hdl.handle.net/20.500.14352/103555
dc.issue.number6
dc.journal.titleCancers
dc.language.isoeng
dc.page.initial1894
dc.publisherMDPI
dc.relation.projectIDinfo:eu-repo/grantAgreement/180N//19_PETNUKL, 180◦N
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu616.831-006.484
dc.subject.keywordGlioblastoma
dc.subject.keywordRecurrence
dc.subject.keywordRadiomics
dc.subject.keywordRachine learning
dc.subject.keywordMRI
dc.subject.keywordArtificial intelligence
dc.subject.ucmOncología
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco3207.13 Oncología
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titlePredicting regions of local recurrence in glioblastomas using voxel-based radiomic features of multiparametric postoperative MRI
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number15
dspace.entity.typePublication
relation.isAuthorOfPublication9a253066-222f-4101-b183-3329110aedfa
relation.isAuthorOfPublication.latestForDiscovery9a253066-222f-4101-b183-3329110aedfa

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Predicting Regions of Local Recurrence in Glioblastomas.pdf
Size:
12.35 MB
Format:
Adobe Portable Document Format

Collections