Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Probabilistic graphical models for species richness prediction: Are current protected areas effective to face climate emergency?

dc.contributor.authorMaldonado, A. D.
dc.contributor.authorValdivieso, A.
dc.contributor.authorRescia Perazzo, Alejandro Javier
dc.contributor.authorAguilera, Ángeles
dc.date.accessioned2023-06-17T08:57:17Z
dc.date.available2023-06-17T08:57:17Z
dc.date.issued2020-06-22
dc.description.abstractClimate change has been related to the current loss of global biodiversity. In this paper, the effects of different scenarios of climate change on the distribution of the four classes of terrestrial vertebrate species in Andalusia (Spain) are explored. The goal is to obtain potential climatically suitable areas for each group (amphibians, reptiles, mammals and birds) under each proposed scenario and examine the usefulness of the current static design of protected areas. We propose a methodology to construct habitat suitability models, which are used to predict the expected species richness given each projected scenario of climate change. The relative change of the species richness within National and Natural Parks, remainder of Natura (2000) network and unprotected areas is compared. The results of the study show a broad effect of climate change on the species richness distribution. In general, there is a loss of specific richness and a restricted availability of suitable areas. The protected areas located in higher altitudes maintain the best conditions for the survival of the taxa considered in the proposed climate change scenarios.
dc.description.departmentDepto. de Biodiversidad, Ecología y Evolución
dc.description.facultyFac. de Ciencias Biológicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/63602
dc.identifier.doi10.1016/j.gecco.2020.e01162
dc.identifier.issn2351-9894
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/pii/S2351989420307034
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7688
dc.journal.titleGlobal Ecology and Conservation
dc.language.isoeng
dc.page.initiale01162
dc.publisherElsevier
dc.relation.projectID(TIN2016-77902-C3-3-P)
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu574
dc.subject.keywordBayesian networks
dc.subject.keywordTerrestrial vertebrates
dc.subject.keywordEffectiveness of protected areas
dc.subject.keywordConservation policy
dc.subject.ucmEcología (Biología)
dc.subject.unesco2401.06 Ecología animal
dc.titleProbabilistic graphical models for species richness prediction: Are current protected areas effective to face climate emergency?
dc.typejournal article
dc.volume.number23
dspace.entity.typePublication
relation.isAuthorOfPublication71393e68-feaa-411f-9d60-9ef68f098acd
relation.isAuthorOfPublication.latestForDiscovery71393e68-feaa-411f-9d60-9ef68f098acd

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Valdivieso-DBEE-Probabilistic-graphical-models.pdf
Size:
12.97 MB
Format:
Adobe Portable Document Format

Collections