Arnold’s conjecture and symplectic reduction
dc.contributor.author | Ibort, A. | |
dc.contributor.author | Martínez Ontalba, Celia | |
dc.date.accessioned | 2023-06-20T17:01:13Z | |
dc.date.available | 2023-06-20T17:01:13Z | |
dc.date.issued | 1996 | |
dc.description.abstract | Fortune (1985) proved Arnold's conjecture for complex projective spaces, by exploiting the fact that CPn-1 is a symplectic quotient of C-n. In this paper, we show that Fortune's approach is universal in the sense that it is possible to translate Arnold's conjecture on any closed symplectic manifold (Q,Omega) to a critical point problem with symmetry on loops in R(2n) With its Standard symplectic structure. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | CICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16829 | |
dc.identifier.doi | 10.1016/0393-0440(96)89538-6 | |
dc.identifier.issn | 0393-0440 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/0393044096895386 | |
dc.identifier.relatedurl | http://www.sciencedirect.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57636 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of geometry and physics | |
dc.language.iso | eng | |
dc.page.final | 37 | |
dc.page.initial | 25 | |
dc.publisher | Elsevier | |
dc.relation.projectID | PS92/0197 (AI.) | |
dc.relation.projectID | AP92(C.M.O.). | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517 | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | symplectic reduction | |
dc.subject.keyword | critical points | |
dc.subject.keyword | Arnold’s conjecture | |
dc.subject.ucm | Análisis matemático | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Arnold’s conjecture and symplectic reduction | |
dc.type | journal article | |
dc.volume.number | 18 | |
dcterms.references | V.I. Arnold, Commentary on “On a geometrical theorem”, in: Collected Works, Vol. II, ed. H. Poincare (Nauka, Moscow, MR 52 # 5337,1972) pp. 987-989. V.I. Arnold, Fixed points of symplectic diffeomorphisms, in: Mathematical Developments Arisingfrom the Hilbert Problems, Proc. Symp. Pure Math., Amer. Math. Sot. 28 (1976) 66. A. Fleer, Symplectic fixed points and holomorphic spheres, Commun. Math. Phys. 120 (1989) 575-611. B. Fortune, A symplectic fixed point theorem for CP”, Inv. Math. 81 (1985) 29-46. B. Fortune and A. Weinstein, A symplectic fixed point theorem for complex projective spaces, Bull.Amer. Math. Sot. 12 (1985) 128-130. A.B. Givental, A symplectic fixed point theorem for toric manifolds, Progress in Math. Fleer Memorial Volume, 1994, to appear. M.J. Gotay and G.M. Tuynman, R2” is a universal symplectic manifold for reduction, Lett. Math. Phys. 18 (1989) 55-59. L& Hong Van and K. Ono, Symplectic fixed points, the Calabi invariant and Novikov homology,Topology 34 (1995) 155-176. H. Hofer and D. Salamon, Fleer homology and Novikov rings, preprint (1992). A. Ibort and C. Martinez Ontalba, A universal setting for Arnold’s conjecture, C. R. Acad. Sci. Paris t.318, Strie II (1994) 561-566. M. Kummer, On the construction of the reduced phase space of a hamiltonian system with symmetry,Indiana Univ. Math. J 30 (1981) 281-291. Y.-G. Oh, A symplectic fixed point theorem on R*” x Cpk, Math. Z. 203 (1990) 535-552. K. Ono, On the Arnold conjecture for weakly monotone symplectic manifolds, Inv. Math. I 19 (1995)519-537. A. Weinstein, A universal phase space for particles in Yang-Mills fields, Lett. Math. Phys. 2 (1978)417-420. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | b32a56e7-51d2-4637-9e2d-d37952f13e53 | |
relation.isAuthorOfPublication.latestForDiscovery | b32a56e7-51d2-4637-9e2d-d37952f13e53 |
Download
Original bundle
1 - 1 of 1