Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Arnold’s conjecture and symplectic reduction

dc.contributor.authorIbort, A.
dc.contributor.authorMartínez Ontalba, Celia
dc.date.accessioned2023-06-20T17:01:13Z
dc.date.available2023-06-20T17:01:13Z
dc.date.issued1996
dc.description.abstractFortune (1985) proved Arnold's conjecture for complex projective spaces, by exploiting the fact that CPn-1 is a symplectic quotient of C-n. In this paper, we show that Fortune's approach is universal in the sense that it is possible to translate Arnold's conjecture on any closed symplectic manifold (Q,Omega) to a critical point problem with symmetry on loops in R(2n) With its Standard symplectic structure.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16829
dc.identifier.doi10.1016/0393-0440(96)89538-6
dc.identifier.issn0393-0440
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/0393044096895386
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57636
dc.issue.number1
dc.journal.titleJournal of geometry and physics
dc.language.isoeng
dc.page.final37
dc.page.initial25
dc.publisherElsevier
dc.relation.projectIDPS92/0197 (AI.)
dc.relation.projectIDAP92(C.M.O.).
dc.rights.accessRightsrestricted access
dc.subject.cdu517
dc.subject.cdu517.9
dc.subject.keywordsymplectic reduction
dc.subject.keywordcritical points
dc.subject.keywordArnold’s conjecture
dc.subject.ucmAnálisis matemático
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleArnold’s conjecture and symplectic reduction
dc.typejournal article
dc.volume.number18
dcterms.referencesV.I. Arnold, Commentary on “On a geometrical theorem”, in: Collected Works, Vol. II, ed. H. Poincare (Nauka, Moscow, MR 52 # 5337,1972) pp. 987-989. V.I. Arnold, Fixed points of symplectic diffeomorphisms, in: Mathematical Developments Arisingfrom the Hilbert Problems, Proc. Symp. Pure Math., Amer. Math. Sot. 28 (1976) 66. A. Fleer, Symplectic fixed points and holomorphic spheres, Commun. Math. Phys. 120 (1989) 575-611. B. Fortune, A symplectic fixed point theorem for CP”, Inv. Math. 81 (1985) 29-46. B. Fortune and A. Weinstein, A symplectic fixed point theorem for complex projective spaces, Bull.Amer. Math. Sot. 12 (1985) 128-130. A.B. Givental, A symplectic fixed point theorem for toric manifolds, Progress in Math. Fleer Memorial Volume, 1994, to appear. M.J. Gotay and G.M. Tuynman, R2” is a universal symplectic manifold for reduction, Lett. Math. Phys. 18 (1989) 55-59. L& Hong Van and K. Ono, Symplectic fixed points, the Calabi invariant and Novikov homology,Topology 34 (1995) 155-176. H. Hofer and D. Salamon, Fleer homology and Novikov rings, preprint (1992). A. Ibort and C. Martinez Ontalba, A universal setting for Arnold’s conjecture, C. R. Acad. Sci. Paris t.318, Strie II (1994) 561-566. M. Kummer, On the construction of the reduced phase space of a hamiltonian system with symmetry,Indiana Univ. Math. J 30 (1981) 281-291. Y.-G. Oh, A symplectic fixed point theorem on R*” x Cpk, Math. Z. 203 (1990) 535-552. K. Ono, On the Arnold conjecture for weakly monotone symplectic manifolds, Inv. Math. I 19 (1995)519-537. A. Weinstein, A universal phase space for particles in Yang-Mills fields, Lett. Math. Phys. 2 (1978)417-420.
dspace.entity.typePublication
relation.isAuthorOfPublicationb32a56e7-51d2-4637-9e2d-d37952f13e53
relation.isAuthorOfPublication.latestForDiscoveryb32a56e7-51d2-4637-9e2d-d37952f13e53

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ontalba03.pdf
Size:
841.82 KB
Format:
Adobe Portable Document Format

Collections