High-Dimensional Brain: A Tool for Encoding and Rapid Learning of Memories by Single Neurons

dc.contributor.authorTyukin, Ivan
dc.contributor.authorGorban, Alexander
dc.contributor.authorCalvo Tapia, Carlos
dc.contributor.authorMakarova, Julia
dc.contributor.authorMakarov Slizneva, Valeriy
dc.date.accessioned2024-01-23T18:17:46Z
dc.date.available2024-01-23T18:17:46Z
dc.date.issued2018
dc.description.abstractCodifying memories is one of the fundamental problems of modern Neuroscience. The functional mechanisms behind this phenomenon remain largely unknown. Experimental evidence suggests that some of the memory functions are performed by stratified brain structures such as the hippocampus. In this particular case, single neurons in the CA1 region receive a highly multidimensional input from the CA3 area, which is a hub for information processing. We thus assess the implication of the abundance of neuronal signalling routes converging onto single cells on the information processing. We show that single neurons can selectively detect and learn arbitrary information items, given that they operate in high dimensions. The argument is based on stochastic separation theorems and the concentration of measure phenomena. We demonstrate that a simple enough functional neuronal model is capable of explaining: (i) the extreme selectivity of single neurons to the information content, (ii) simultaneous separation of several uncorrelated stimuli or informational items from a large set, and (iii) dynamic learning of new items by associating them with already “known” ones. These results constitute a basis for organization of complex memories in ensembles of single neurons. Moreover, they show that no a priori assumptions on the structural organization of neuronal ensembles are necessary for explaining basic concepts of static and dynamic memories.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (España)
dc.description.sponsorshipInnovate UK
dc.description.sponsorshipMinistry of Education and Science (Russia)
dc.description.statuspub
dc.identifier.citationTyukin IY, Gorban AN, Calvo C, Makarova J, Makarov VA. High-dimensional brain. A tool for encoding and rapid learning of memories by single neurons. Bulletin of Mathematical Biology 81(11) 4856-4888, 2019
dc.identifier.doi10.1007/s11538-018-0415-5
dc.identifier.officialurlhttps://doi.org/10.1007/s11538-018-0415-5
dc.identifier.urihttps://hdl.handle.net/20.500.14352/94901
dc.issue.number11
dc.journal.titleBulletin of Mathematical Biology
dc.language.isoeng
dc.page.final4888
dc.page.initial4856
dc.publisherSpringer
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//FIS2014-57090-P/ES/MODELOS BIOFISICOS DE COGNICION RECURSIVA, VERSATIL Y ABSTRACTA PARA LA NAVEGACION AUTONOMA EN ENTORNOS COOPERATIVOS/
dc.relation.projectIDF
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordNeural memories
dc.subject.keywordSingle-neuron learning
dc.subject.keywordPerceptron
dc.subject.keywordStochastic separation theorems
dc.subject.ucmCiencias
dc.subject.unesco12 Matemáticas
dc.subject.unesco2404 Biomatemáticas
dc.titleHigh-Dimensional Brain: A Tool for Encoding and Rapid Learning of Memories by Single Neurons
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number18
dspace.entity.typePublication
relation.isAuthorOfPublication7de9bed2-b9e9-42b3-a058-9fd2ef09f4b4
relation.isAuthorOfPublicationa5728eb3-1e14-4d59-9d6f-d7aa78f88594
relation.isAuthorOfPublication.latestForDiscovery7de9bed2-b9e9-42b3-a058-9fd2ef09f4b4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
High-Dimensional_Brain.pdf
Size:
2.27 MB
Format:
Adobe Portable Document Format

Collections