Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Gauge interpretation of characteristic classes

Loading...
Thumbnail Image

Full text at PDC

Publication date

2001

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

International Press
Citations
Google Scholar

Citation

Abstract

Let π:P→M be a principal G-bundle. Then one can consider the following diagram of fibre bundles: \CD J^{1}(P) @>\pi_{10}>> P\\ @VqVV @VV\pi V\\ C(P) @>p>> M\endCD where p is the bundle of connections of π. As is well known, q is also a principal G-bundle, and the canonical contact form θ on J1(P) can be considered as a connection form on q, with curvature form Θ. One defines aut P as the Lie algebra of G-invariant vector fields on P and gau P as the ideal of π-vertical G-invariant vector fields on P. If X∈autP⊂X(P), then one defines the infinitesimal contact transformation associated to X, X1∈X(J1(P)), and its q-projection XC∈X(C(P)). A differential form Ω on C(P) is said to be aut P-invariant [resp. gauge invariant] if LXCΩ=0 for every X∈autP [resp. X∈gauP]. On the other hand, let us denote by g the Lie algebra of G. An element of the symmetric algebra of g∗ will be called a Weil polynomial. The main result of the paper is the following theorem: If G is connected, for every gauge invariant form Ω on C(P) there exist differential forms ω1,…,ωk on M and Weil polynomials f1,…,fk such that Ω=p∗(ω1)∧f1(Θ)+⋯+p∗(ωk)∧fk(Θ). As a consequence, the authors prove that a differential form Ω on C(P) is aut P-invariant iff Ω=f(Θ), where f is a Weil polynomial, and then Ω is closed. Explicit examples are shown and the link between the above theorem and the geometric formulation of Utiyama's theorem is explained.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections