Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Pencils of curves on smooth surfaces

dc.contributor.authorMelle Hernández, Alejandro
dc.contributor.authorWall, Charles Terence Clegg
dc.date.accessioned2023-06-20T16:48:41Z
dc.date.available2023-06-20T16:48:41Z
dc.date.issued2001-09
dc.description.abstractAlthough the theory of singularities of curves - resolution, classification, numerical invariants - goes through with comparatively little change in finite characteristic, pencils of curves are more difficult. Bertini's theorem only holds in a much weaker form, and it is convenient to restrict to pencils such that, when all base points are resolved, the general member of the pencil becomes non-singular. Even here, the usual rule for calculating the Euler characteristic of the resolved surface has to be modified by a term measuring wild ramification. We begin by describing this background, then proceed to discuss the exceptional members of a pencil. In characteristic 0 it was shown by Há and Lê and by Lê and Weber, using topological reasoning, that exceptional members can be characterised by their Euler characteristics. We present a combinatorial argument giving a corresponding result in characteristic p. We first treat pencils with no base points, and then reduce the remaining case to this.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipConvenio SEUID – Royal Society
dc.description.sponsorshipDGES
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/13210
dc.identifier.doi10.1112/plms/83.2.257
dc.identifier.issn0024-6115
dc.identifier.officialurlhttp://plms.oxfordjournals.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57097
dc.issue.number2
dc.journal.titleProceedings of the London Mathematical Society
dc.language.isoeng
dc.page.final278
dc.page.initial257
dc.publisherOxford University Press (OUP)
dc.relation.projectIDPB97-0284-CO2
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordNumerical invariants of singularities
dc.subject.keywordCharacteristic p
dc.subject.keywordSingularities of curves
dc.subject.keywordResolution
dc.subject.keywordBertini’s theorem
dc.subject.keywordPencil
dc.subject.keywordEuler characteristic
dc.subject.keywordWild ramification
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titlePencils of curves on smooth surfaces
dc.typejournal article
dc.volume.number83
dspace.entity.typePublication
relation.isAuthorOfPublicationc5f952f6-669f-4e3d-abc8-76d6ac56119b
relation.isAuthorOfPublication.latestForDiscoveryc5f952f6-669f-4e3d-abc8-76d6ac56119b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2000Planpen5.pdf
Size:
225.1 KB
Format:
Adobe Portable Document Format

Collections