Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Temperature-dependent and time-resolved luminescence characterization of γ-Ga_(2)O_(3) nanoparticles

Loading...
Thumbnail Image

Full text at PDC

Publication date

2023

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Citations
Google Scholar

Citation

Abstract

The temperature-dependent luminescence properties of -Ga_(2)O_(3) nanoparticles prepared by a precipitation method are investigated under steady-state and pulsed-light excitation. The main photoluminescence (PL) emission at room temperature consists of a single blue band centered around 2.76 eV, which hardly undergoes a blueshift of 0.03 eV when temperature goes down to 4 K. The emission behaves with a positive thermal quenching following an Arrhenius-type curve. The data fitting yields two non-radiative levels affecting the emission band with activation energies of 7 meV and 40 meV. On the other hand, time-resolved PL measurements have also been taken and studied as a function of the temperature. The data analysis has resulted in two lifetimes: one of 3.4 ns and the other of 32 ns at room temperature, which undergo an increase up to 4.5 ns and 65 ns at T = 4 K, respectively. Based on both stationary and dynamic PL results, a model of radiative and non-radiative levels associated with the main emission bands of -Ga_(2)O_(3) is suggested. Finally, by using PL excitation measurements, an estimation of the bandgap and its variation with temperature between 4 K and room temperature were obtained and assessed against O’Donnell–Chen’s law. With this variation it has been possible to calculate the average of the phonon energy, resulting in (ħω)= 10 ± 1 meV.

Research Projects

Organizational Units

Journal Issue

Description

2023 Descuentos MDPI

Keywords

Collections