Space density distribution of galaxies in the absolute magnitude - rotation velocity plane: a volume-complete Tully-Fisher relation from CALIFA stellar kinematics

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
EDP Sciencies
Google Scholar
Research Projects
Organizational Units
Journal Issue
We measured the distribution in absolute magnitude - circular velocity space for a well-defined sample of 199 rotating galaxies of the Calar Alto Legacy Integral Field Area Survey (CALIFA) using their stellar kinematics. Our aim in this analysis is to avoid subjective selection criteria and to take volume and large-scale structure factors into account. Using stellar velocity fields instead of gas emission line kinematics allows including rapidly rotating early-type galaxies. Our initial sample contains 277 galaxies with available stellar velocity fields and growth curve r-band photometry. After rejecting 51 velocity fields that could not be modelled because of the low number of bins, foreground contamination, or significant interaction, we performed Markov chain Monte Carlo modelling of the velocity fields, from which we obtained the rotation curve and kinematic parameters and their realistic uncertainties. We performed an extinction correction and calculated the circular velocity v_circ accounting for the pressure support of a given galaxy. The resulting galaxy distribution on the M-r - v(circ) plane was then modelled as a mixture of two distinct populations, allowing robust and reproducible rejection of outliers, a significant fraction of which are slow rotators. The selection effects are understood well enough that we were able to correct for the incompleteness of the sample. The 199 galaxies were weighted by volume and large-scale structure factors, which enabled us to fit a volume-corrected Tully-Fisher relation (TFR). More importantly, we also provide the volume-corrected distribution of galaxies in the M_r - v_circ plane, which can be compared with cosmological simulations. The joint distribution of the luminosity and circular velocity space densities, representative over the range of -20 > M_r > -22 mag, can place more stringent constraints on the galaxy formation and evolution scenarios than linear TFR fit parameters or the luminosity function alone.
©ESO 2016. Artículo firmado por 15 autores. We sincerely thank S. Courteau and the anonymous referee for carefully reading the draft, thoughtful suggestions, and providing us with an opportunity to improve the manuscript. S.B. acknowledges financial support from BMBF through the Erasmus-F project (grant number 05 A12BA1). C.J.W. acknowledges support through the Marie Curie Career Integration Grant 303912. JFB. acknowledges support from grant AYA2013-48226-C3-1-P from the Spanish Ministry of Economy and Competitiveness (MINECO). IM acknowledges financial support from the Spanish Ministry of Economy and Competetiveness through the grant A&A2013-0422277. This study makes uses of the data provided by the Calar Alto Legacy Integral Field Area (CALIFA) survey ( It is based on observations collected at the Centro Astronómico Hispano-Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut fur Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). In addition to that, we used the data from SDSS DR7 (Abazajian et al. 2009). Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, and of NASA's Astrophysics Data System Bibliographic Services. We have extensively used and are grateful for the open source data analysis and visualisation tools: Matplotlib (Hunter 2007), SciPy (Jones et al. 2001-2015), hyperfit (Robotham & Obreschkow 2015) and prettyplotlib (
Unesco subjects
Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543 Adams, J. J., Gebhardt, K., Blanc, G. A., et al. 2012, ApJ, 745, 92 Aguerri, J. A. L., Méndez Abreu, J., Falcón Barroso, J., et al. 2015, A&A, 576, A102 Amram, P., Marcelin, M., Balkowski, C., et al. 1994, A&AS, 103, 5 Andersen, D. R. & Bershady, M. A. 2003, ApJ, 599, L79 Balkowski, C., Bottinelli, L., Chamaraux, P., Gouguenheim, L., & Heidmann, J. 1974, A&A, 34, 43 Barrera Ballesteros, J. K., Falcón Barroso, J., García Lorenzo, B., et al. 2014, A&A, 568, A70 Bell, E. F. & de Jong, R. S. 2001, ApJ, 550, 212 Bershady, M. A., Andersen, D. R., Harker, J., Ramsey, L. W., & Verheijen, M. A. W. 2004, PASP, 116, 565 Bertola, F., Bettoni, D., Danziger, J., et al. 1991, ApJ, 373, 369 Bland, J., Taylor, K., & Atherton, P. D. 1987, MNRAS, 228, 595 Blanton, M. R., Geha, M., & West, A. A. 2008, ApJ, 682, 861 Böhm, A. & Ziegler, B. L. 2007, ApJ, 668, 846 Böhm, A., Ziegler, B. L., Saglia, R. P., et al. 2004, A&A, 420, 97 Bosma, A. 1978, PhD thesis, PhD Thesis, Groningen Univ., (1978) Bottinelli, L. 1971, A&A, 10, 437 Calzetti, D. 2013, Star Formation Rate Indicators, ed. J. Falcón Barroso & J. H. Knapen, 419 Cappellari, M. & Copin, Y. 2003, MNRAS, 342, 345 Cappellari, M. & Emsellem, E. 2004, PASP, 116, 138 Catalán Torrecilla, C., Gil de Paz, A., Castillo Morales, A., et al. 2015, A&A, 584, A87 Chan, T. K., Kereš, D., Oñorbe, J., et al. 2015, MNRAS, 454, 2981 Cole, S., Lacey, C. G., Baugh, C. M., & Frenk, C. S. 2000, MNRAS, 319, 168 Courteau, S. 1996, ApJS, 103, 363 Courteau, S. 1997, AJ, 114, 2402 Courteau, S., Andersen, D. R., Bershady, M. A., MacArthur, L. A., & Rix, H.-W. 2003, ApJ, 594, 208 Courteau, S. & Dutton, A. A. 2015, ApJ, 801, L20 Courteau, S., Dutton, A. A., van den Bosch, F. C., et al. 2007, ApJ, 671, 203 Courteau, S. & Rix, H.-W. 1999, ApJ, 513, 561 Cresci, G., Hicks, E. K. S., Genzel, R., et al. 2009, ApJ, 697, 115 Croton, D. J., Springel, V., White, S. D. M., et al. 2006, MNRAS, 365, 11 Davis, T. A., Bureau, M., Young, L. M., et al. 2011, MNRAS, 414, 968 Di Teodoro, E. M., Fraternali, F., & Miller, S. H. 2016, ArXiv e-prints Dutton, A. A., Conroy, C., van den Bosch, F. C., et al. 2011, MNRAS, 416, 322 Dutton, A. A. & van den Bosch, F. C. 2009, MNRAS, 396, 141 Dutton, A. A., van den Bosch, F. C., Dekel, A., & Courteau, S. 2007, ApJ, 654, 27 Eisenstein, D. J. & Loeb, A. 1996, ApJ, 459, 432 Eke, V. R., Navarro, J. F., & Steinmetz, M. 2001, ApJ, 554, 114 Emsellem, E., Cappellari, M., Krajnović, D., et al. 2011, MNRAS, 414, 888 Emsellem, E., Cappellari, M., Krajnović, D., et al. 2007, MNRAS, 379, 401 Falcón Barroso, J., Lyubenova, M., & van de Ven, G. 2015, in IAU Symposium, Vol. 311, IAU Symposium, ed. M. Cappellari & S. Courteau, 78–81 Flores, H., Hammer, F., Puech, M., Amram, P., & Balkowski, C. 2006, A&A, 455, 107 Foreman-Mackey, D., Conley, A., Meierjurgen Farr, W., et al. 2013, emcee: The MCMC Hammer, Astrophysics Source Code Library Franx, M. & de Zeeuw, T. 1992, ApJ, 392, L47 García Benito, R., Zibetti, S., Sánchez, S. F., et al. 2015, A&A, 576, A135 García Lorenzo, B., Márquez, I., Barrera Ballesteros, J. K., et al. 2015, A&A, 573, A59 Garrido, O., Marcelin, M., & Amram, P. 2004, MNRAS, 349, 225 Giovanelli, R., Haynes, M. P., Herter, T., et al. 1997, AJ, 113, 53 Gnedin, O. Y., Weinberg, D. H., Pizagno, J., Prada, F., & Rix, H.-W. 2007, ApJ, 671, 1115 Gnerucci, A., Marconi, A., Cresci, G., et al. 2011, A&A, 528, A88 González, A. H., Williams, K. A., Bullock, J. S., Kolatt, T. S., & Primack, J. R. 2000, ApJ, 528, 145 Goodman, J. & Weare, J. 2010, Communications in Applied Mathematics and Computational Science, 5, 65 Governato, F., Willman, B., Mayer, L., et al. 2007, MNRAS, 374, 1479 Green, A. W., Glazebrook, K., McGregor, P. J., et al. 2014, MNRAS, 437, 1070 Hall, M., Courteau, S., Dutton, A. A., McDonald, M., & Zhu, Y. 2012, MNRAS, 425, 2741 Hubble, E. P. 1926, ApJ, 64, 321 Hunter, J. D. 2007, Computing In Science & Engineering, 9, 90 Husemann, B., Jahnke, K., Sánchez, S. F., et al. 2013, A&A, 549, A87 Jones, E., Oliphant, T., Peterson, P., et al. 2001-2015, SciPy: Open source scientific tools for Python, [Online; accessed 2015-06-17] Kalinova, V. & Lyubenova, M. submitted, The inner mass distribution of latetype spiral galaxies from SAURON stellar kinematic maps Koda, J., Sofue, Y., & Wada, K. 2000, ApJ, 532, 214 Krajnović, D., Bacon, R., Cappellari, M., et al. 2008, MNRAS, 390, 93 Maller, A. H., Berlind, A. A., Blanton, M. R., & Hogg, D. W. 2009, ApJ, 691, 394 Marcelin, M. & Athanassoula, E. 1982, A&A, 105, 76 Masters, K. L., Springob, C. M., Haynes, M. P., & Giovanelli, R. 2006, ApJ, 653, 861 McCarthy, I. G., Schaye, J., Font, A. S., et al. 2012, MNRAS, 427, 379 McGaugh, S. S., Schombert, J. M., Bothun, G. D., & de Blok, W. J. G. 2000, ApJ, 533, L99 Miller, S. H., Bundy, K., Sullivan, M., Ellis, R. S., & Treu, T. 2011, ApJ, 741, 115 Miller, S. H., Ellis, R. S., Sullivan, M., et al. 2012, ApJ, 753, 74 Miller, S. H., Sullivan, M., & Ellis, R. S. 2013, ApJ, 762, L11 Mould, J. R., Huchra, J. P., Freedman, W. L., et al. 2000, ApJ, 529, 786 Neistein, E., Maoz, D., Rix, H.-W., & Tonry, J. L. 1999, AJ, 117, 2666 Neumayer, N., Walcher, C. J., Andersen, D., et al. 2011, MNRAS, 413, 1875 Nicholson, R. A., Bland-Hawthorn, J., & Taylor, K. 1992, ApJ, 387, 503 Obreschkow, D. & Meyer, M. 2013, ApJ, 777, 140 Opik, E. 1922, ApJ, 55, 406 Parzen, E. 1962, Ann. Math. Statist., 33, 1065 Persic, M. & Salucci, P. 1991, ApJ, 368, 60 Persic, M., Salucci, P., & Stel, F. 1996, MNRAS, 281, 27 Pizagno, J., Prada, F., Weinberg, D. H., et al. 2007, AJ, 134, 945 Puech, M., Flores, H., Hammer, F., et al. 2008, A&A, 484, 173 Querejeta, M., Eliche Moral, M. C., Tapia, T., et al. 2015, A&A, 573, A78 Rix, H.-W., Guhathakurta, P., Colless, M., & Ing, K. 1997, MNRAS, 285, 779 Roberts, M. S. 1969, AJ, 74, 859 Robotham, A. & Obreschkow, D. 2015, MNRAS, submitted Rodríguez, S. & Padilla, N. D. 2013, MNRAS, 434, 2153 Rogstad, D. H., Wright, M. C. H., & Lockhart, I. A. 1976, ApJ, 204, 703 Rosenblatt, M. 1956, Ann. Math. Statist., 27, 832 Roth, M. M., Kelz, A., Fechner, T., et al. 2005, PASP, 117, 620 Rubin, V. C., Burstein, D., Ford, Jr., W. K., & Thonnard, N. 1985, ApJ, 289, 81 Saintonge, A. & Spekkens, K. 2011, ApJ, 726, 77 Sánchez, S. F., Kennicutt, R. C., Gil de Paz, A., et al. 2012, A&A, 538, A8 Sánchez, S. F., Rosales Ortega, F. F., Iglesias Páramo, J., et al. 2014, A&A, 563, A49 Schmidt, M. 1968, ApJ, 151, 393 Schommer, R. A., Bothun, G. D., Williams, T. B., & Mould, J. R. 1993, AJ, 105, 97 Scott, D. W. & Sain, S. R. 2005, Handbook of Statistics, 24, 229 Shostak, G. S. 1975, ApJ, 198, 527 Silverman, B. W. 1986, Density estimation for statistics and data analysis, Vol. 26 (CRC press) Steinmetz, M. & Navarro, J. F. 1999, ApJ, 513, 555 Swinbank, A. M., Bower, R. G., Smith, G. P., et al. 2006, MNRAS, 368, 1631 Tonini, C., Maraston, C., Ziegler, B., et al. 2011, MNRAS, 415, 811 Trujillo Gómez, S., Klypin, A., Primack, J., & Romanowsky, A. J. 2011, ApJ, 742, 16 Tully, R. B. & Fisher, J. R. 1977, A&A, 54, 661 Tully, R. B. & Pierce, M. J. 2000, ApJ, 533, 744 Valdes, F., Gupta, R., Rose, J. A., Singh, H. P., & Bell, D. J. 2004, ApJS, 152, 251 van den Bosch, F. C. 2000, ApJ, 530, 177 van den Bosch, F. C., Robertson, B. E., Dalcanton, J. J., & de Blok, W. J. G. 2000, AJ, 119, 1579 Verheijen, M. A. W. 2001, ApJ, 563, 694 Verheijen, M. A. W., Bershady, M. A., Andersen, D. R., et al. 2004, Astronomische Nachrichten, 325, 151 Vogelsberger, M., Genel, S., Sijacki, D., et al. 2013, MNRAS, 436, 3031 Vogelsberger, M., Genel, S., Springel, V., et al. 2014, Nature, 509, 177 Vogt, N. P., Forbes, D. A., Phillips, A. C., et al. 1996, ApJ, 465, L15 Walcher, C. J., Lamareille, F., Vergani, D., et al. 2008, A&A, 491, 713 Walcher, C. J., Wisotzki, L., Bekeraité, S., et al. 2014, A&A, 569, A1 Weijmans, A.-M., Krajnović, D., van de Ven, G., et al. 2008, MNRAS, 383, 1343 Wild, V., Charlot, S., Brinchmann, J., et al. 2011a, MNRAS, 417, 1760 Wild, V., Groves, B., Heckman, T., et al. 2011b, MNRAS, 410, 1593 Williams, M. J., Bureau, M., & Cappellari, M. 2009, in Astronomical Society of the Pacific Conference Series, Vol. 419, Galaxy Evolution: Emerging Insights and Future Challenges, ed. S. Jogee, I. Marinova, L. Hao, & G. A. Blanc, 167 Yegorova, I. A. & Salucci, P. 2007, MNRAS, 377, 507 Ziegler, B. L., Böhm, A., Fricke, K. J., et al. 2002, ApJ, 564, L69