Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

CloudProphet: A Machine Learning-Based Performance Prediction for Public Clouds

dc.contributor.authorHuang, Darong
dc.contributor.authorCostero Valero, Luis María
dc.contributor.authorPahlevan, Ali
dc.contributor.authorZapater, Marina
dc.contributor.authorAtienza Alonso, David
dc.contributor.editorIEEE
dc.date.accessioned2024-04-24T14:00:33Z
dc.date.available2024-04-24T14:00:33Z
dc.date.issued2024-01-29
dc.description.abstractComputing servers have played a key role in developing and processing emerging compute-intensive applications in recent years. Consolidating multiple virtual machines (VMs) inside one server to run various applications introduces severe competence for limited resources among VMs. Many techniques such as VM scheduling and resource provisioning are proposed to maximize the cost-efficiency of the computing servers while alleviating the performance inference between VMs. However, these management techniques require accurate performance prediction of the application running inside the VM, which is challenging to get in the public cloud due to the black-box nature of the VMs. From this perspective, this paper proposes a novel machine learning-based performance prediction approach for applications running in the cloud. To achieve high-accuracy predictions for black-box VMs, the proposed method first identifies the running application inside the virtual machine. It then selects highly correlated runtime metrics as the input of the machine learning approach to accurately predict the performance level of the cloud application. Experimental results with state-of-the-art cloud benchmarks demonstrate that our proposed method outperforms existing prediction methods by more than 2× in terms of the worst prediction error. In addition, we successfully tackle the challenge of performance prediction for applications with variable workloads by introducing the performance degradation index, which other comparison methods fail to consider. The workflow versatility of the proposed approach has been verified with different modern servers and VM configurations.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.1109/TSUSC.2024.3359325
dc.identifier.issn2377-3782
dc.identifier.officialurlhttps://ieeexplore.ieee.org/document/10415550
dc.identifier.urihttps://hdl.handle.net/20.500.14352/103448
dc.journal.titleIEEE Transactions on Sustainable Computing
dc.language.isoeng
dc.publisherIEEE
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordPerformance prediction
dc.subject.keywordApplication type identification
dc.subject.keywordMachine learning
dc.subject.keywordVirtual machine
dc.subject.keywordPublic clouds
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco3304.06 Arquitectura de Ordenadores
dc.titleCloudProphet: A Machine Learning-Based Performance Prediction for Public Clouds
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublicationb2616c88-d3da-43df-86cb-3ced1084f460
relation.isAuthorOfPublicationcbef6c8a-04b5-428f-b092-c8399eb856a4
relation.isAuthorOfPublication.latestForDiscoveryb2616c88-d3da-43df-86cb-3ced1084f460

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CloudProphet_A_Machine_Learning-Based_Performance_Prediction_for_Public_Clouds.pdf
Size:
3.99 MB
Format:
Adobe Portable Document Format

Collections