Independence of Yang-Mills Equations with Respect to the Invariant Pairing in the Lie Algebra
dc.contributor.author | Castrillón López, Marco | |
dc.contributor.author | Muñoz Masqué, Jaime | |
dc.date.accessioned | 2023-06-20T10:36:22Z | |
dc.date.available | 2023-06-20T10:36:22Z | |
dc.date.issued | 2007 | |
dc.description.abstract | It is proved that the Euler–Lagrange equations of a Yang-Mills type Lagragian is independent with respect to the chosen pairing in the Lie algebra. Moreover, the Hamilton- Cartan equations of these Lagrangians are obtained and proved to be also independent with respect to the pairing. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Educación y Ciencia of Spain | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22168 | |
dc.identifier.doi | 10.1007/s10773-006-9256-3 | |
dc.identifier.issn | 0020-7748 | |
dc.identifier.officialurl | http://link.springer.com/article/10.1007%2Fs10773-006-9256-3#page-1 | |
dc.identifier.relatedurl | http://link.springer.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50743 | |
dc.issue.number | 4 | |
dc.journal.title | International Journal of Theoretical Physics | |
dc.language.iso | eng | |
dc.page.final | 1026 | |
dc.page.initial | 1020 | |
dc.publisher | Springer | |
dc.relation.projectID | MTM2005–00173;MTM2004–01683 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.16 | |
dc.subject.keyword | Adjoint-invariant pairing | |
dc.subject.keyword | gauge invariance | |
dc.subject.keyword | jet bundles | |
dc.subject.keyword | principal connection | |
dc.subject.keyword | Yang-Mills fields. | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Independence of Yang-Mills Equations with Respect to the Invariant Pairing in the Lie Algebra | |
dc.type | journal article | |
dc.volume.number | 46 | |
dcterms.references | Bleecker, D. (1981). Gauge Theory and Variational Principles. Global Analysis Pure and Applied Series A, 1, Addison-Wesley Publishing Co., Reading, MA. Castrillón López, M. and Muñoz Masqué, J. (2001). The geometry of the bundle of connections. Mathematische Zeitschrift 236, 797–811. Goldschmidt, H. and Sternberg, S. (1973). The Hamilton-Cartan formalism in the calculus of variations. Annales de l’Institut Fourier (Grenoble) 23, 203–267. Kobayashi, S. and Nomizu, K. (1963). Foundations of Differential Geometry, Vol. I, John Wiley & Sons, Inc. (Interscience Division), New York. J. M. and Coronado, L. M. P. (2000). Parameter invariance in field theory and the Hamiltonian formalism. Fortschritte der Physik 48, 361–405. Onishchik, A. L. (2004). Lectures on real semisimple Lie algebras and their representations. ESI Lectures in Mathematics and Physics, European Mathematical Society, Zürich. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 32e59067-ef83-4ca6-8435-cd0721eb706b | |
relation.isAuthorOfPublication.latestForDiscovery | 32e59067-ef83-4ca6-8435-cd0721eb706b |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Castrillón-Independence.pdf
- Size:
- 190.62 KB
- Format:
- Adobe Portable Document Format