Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Independence of Yang-Mills Equations with Respect to the Invariant Pairing in the Lie Algebra

dc.contributor.authorCastrillón López, Marco
dc.contributor.authorMuñoz Masqué, Jaime
dc.date.accessioned2023-06-20T10:36:22Z
dc.date.available2023-06-20T10:36:22Z
dc.date.issued2007
dc.description.abstractIt is proved that the Euler–Lagrange equations of a Yang-Mills type Lagragian is independent with respect to the chosen pairing in the Lie algebra. Moreover, the Hamilton- Cartan equations of these Lagrangians are obtained and proved to be also independent with respect to the pairing.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación y Ciencia of Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22168
dc.identifier.doi10.1007/s10773-006-9256-3
dc.identifier.issn0020-7748
dc.identifier.officialurlhttp://link.springer.com/article/10.1007%2Fs10773-006-9256-3#page-1
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50743
dc.issue.number4
dc.journal.titleInternational Journal of Theoretical Physics
dc.language.isoeng
dc.page.final1026
dc.page.initial1020
dc.publisherSpringer
dc.relation.projectIDMTM2005–00173;MTM2004–01683
dc.rights.accessRightsrestricted access
dc.subject.cdu515.16
dc.subject.keywordAdjoint-invariant pairing
dc.subject.keywordgauge invariance
dc.subject.keywordjet bundles
dc.subject.keywordprincipal connection
dc.subject.keywordYang-Mills fields.
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleIndependence of Yang-Mills Equations with Respect to the Invariant Pairing in the Lie Algebra
dc.typejournal article
dc.volume.number46
dcterms.referencesBleecker, D. (1981). Gauge Theory and Variational Principles. Global Analysis Pure and Applied Series A, 1, Addison-Wesley Publishing Co., Reading, MA. Castrillón López, M. and Muñoz Masqué, J. (2001). The geometry of the bundle of connections. Mathematische Zeitschrift 236, 797–811. Goldschmidt, H. and Sternberg, S. (1973). The Hamilton-Cartan formalism in the calculus of variations. Annales de l’Institut Fourier (Grenoble) 23, 203–267. Kobayashi, S. and Nomizu, K. (1963). Foundations of Differential Geometry, Vol. I, John Wiley & Sons, Inc. (Interscience Division), New York. J. M. and Coronado, L. M. P. (2000). Parameter invariance in field theory and the Hamiltonian formalism. Fortschritte der Physik 48, 361–405. Onishchik, A. L. (2004). Lectures on real semisimple Lie algebras and their representations. ESI Lectures in Mathematics and Physics, European Mathematical Society, Zürich.
dspace.entity.typePublication
relation.isAuthorOfPublication32e59067-ef83-4ca6-8435-cd0721eb706b
relation.isAuthorOfPublication.latestForDiscovery32e59067-ef83-4ca6-8435-cd0721eb706b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Castrillón-Independence.pdf
Size:
190.62 KB
Format:
Adobe Portable Document Format

Collections