Susceptibility of non-linear systems as an approach to metabolic responses
Loading...
Official URL
Full text at PDC
Publication date
2003
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Oxford University Press
Citation
Torralba AS, Susceptibility of non-linear systems as an approach to metabolic responses, Bioinformatics, 2003, 19(18): 2428-2435
Abstract
Theoretical analysis has shown the possibility of determining causal connectivities of reacting species and the reaction mechanism in complex chemical and biochemical reaction systems by applying pulse changes of concentrations of one or more species, of arbitrary magnitude, and measuring the temporal response of as many species as possible. This method, limited to measured and pulsed species, is given here an experimental test on a part of glycolysis including the sequence of reactions from glucose to fructose 1,6-biphosphate, followed by the bifurcation of that sequence into two branches, one ending in glycerol 3-phosphate, the other in glyceraldehyde 3-phosphate. Pulses of concentrations of one species at a time are applied to the open system in a non-equilibrium stationary state, and the temporal responses in concentrations of six metabolites are measured by capillary zone electrophoresis. From the results of these measurements and the use of the theory for their interpretation, we establish the causal connectivities of the metabolites and thus the reaction mechanism, including the bifurcation of one chain of reactions into two. In this test case of the pulse method, no prior knowledge was assumed of the biochemistry of this system. We conclude that the pulse method is relatively simple and effective in determining reaction mechanisms in complex systems, including reactants, products, intermediates, and catalysts and their effectors. The method is likely to be useful for substantially more complex systems.
Description
The labor of Spanish lobbies for better employment rights for postgraduate researchers (www.precarios.org) is gratefully acknowledged. Marcel O. Vlad and John Ross participated in helpful discussions. Yoel Rodríguez and Francisco Montero
read the manuscript. The author is a recipient of a fellowship from the FPU program of the Ministerio de Educación, Cultura y Deporte of Spain.