Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Permanent components in seasonal variables

dc.contributor.authorFlores de Frutos, Rafael
dc.contributor.authorNovales Cinca, Alfonso Santiago
dc.date.accessioned2023-06-21T01:36:41Z
dc.date.available2023-06-21T01:36:41Z
dc.date.issued1994
dc.description.abstractWe propose considering a seasonal time series as the realization of a s-variate stochastic process, s being the seasonal periodo In this paper we propose a test statistic for the hypothesis of a univariate versus a multivariate representation of seasonality. We find evidence against the more standard univariate representation for some key variables of the U.S. economy. When a VAR representation is chosen for each of these variables and its residuals are properly orthogonalized, forecasting perfomance is improved, relative to univariate ARIMA models. Also, a Permanent-Transitory decomposition of each variable reveals that permanent components exhibit important seasonal fluctuations. This supports the view that seasonality should be considered as an integral part of agents' decision-making.
dc.description.abstractProponemos considerar a una serie temporal estacional como la realización de un proceso estocástico s-variante, siendo s el período estacional. En este artículo se propone un contraste para la hipótesis nula de representación univariante de la estacionalidad, versus la alternativa de representación multivariante. Para algunas variables importantes de la economía estadounidense se rechaza la representación univariante estandar. Los procesos VAR con residuos ortogonalizados, asociados a algunas de estas variables, proporcionan mejores previsiones que las obtenidas a partir de los sencillos modelos univariantes. Al mismo tiempo, la descomposición en componentes, Permanente y Transitoria, de cada variable revela que las componentes permanentes exhiben importantes fluctuaciones estacionales. Este hecho constituye una evidencia en favor de considerar el fenómeno de la estacionalidad como parte integral de la toma de decisiones de los agentes.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27882
dc.identifier.relatedurlhttp://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64151
dc.issue.number06
dc.language.isoeng
dc.page.total42
dc.publication.placeMadrid
dc.publisherFacultad de Ciencias Económicas y Empresariales. Instituto Complutense de Análisis Económico (ICAE)
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subject.keywordAnálisis de Series temporales
dc.subject.keywordProcesos estocásticos.
dc.subject.ucmProcesos estocásticos
dc.subject.unesco1208.08 Procesos Estocásticos
dc.titlePermanent components in seasonal variables
dc.typetechnical report
dc.volume.number1994
dcterms.referencesBOX, O.E.P. and O.M. JENKINS (1970), 'Time Series Analysis Forecasting and Control', San Francisco: Holden Day. BIRCHENHALL, C.R., R.C. BLADEN-HOVEL, A.P.L. CHUI, D.R. OSBORN and J.P. SMITH (1989), 'A Seasonal Model of Consumption', Economic Journal, 99, 837-843. FRANSES, P.H. (1993), 'Common Periodic Features in Seasonal Time Series', manuscript. GONZALO, J. and C.W.J. GRANGER (1991), 'Estimadon of Common Long-Memory Components in Cointegrated Systems', Discussion Paper 91-33, University of California, San Diego. HYLLEBERG, S. (1992), 'Modelling Seasonality', Oxford Universlty Press. HILLMER, S,C. and O.C. TIAO (1979), 'Likelihood Function of Stationary Multiple Autoregressive Moving Average Models', Journal of the American Statistical Association 74,652-660. JOHANSEN,S, (1988), 'Statistica1 Analysis of Cointegrating Vectors', Journal of Economic Dynamics and Control, 12:231-254. JOURNAL OF ECONOMETRICS (1993), number 55, North-Holland. NERLOVE, M. (1964), 'Spectral Analysis of Seasonal Adjustment Procedures', Journal of Econometrics 32:241-286. OSBORN D.R. (1988), 'Seasonality and Habit Persistence in a Life-Cycle Model of Consumption', Journal of Applied Econometrics 3, 255-266. OSBORN D.R. (1991), 'The Implications of Periodically Varying Coefficients for Seasonal Time Series Processes', Journal of Econometrics 48, 373-384. OSBORN D.R. and J.P. SMITH (1989), 'The Performance of Periodic Autoregressive Models in Forecasting Seasonal U.K. Consumption', Journal of BusinesS and Economics Statistics 1, 117-127. PEÑA, D. and G.P.E. BOX (1984), 'Hidden Relationsbips in Multivariate Time Series', Proc. of Bus. Ec.St. Section American Statistical Association, 494-499. PEÑA, D. and G.P.E. BOX (1987), 'Identifying a Simplifying Structure in Time Series', Journal of the American Statistical Association 823, 836-843. PEÑA, D. (1990), 'Cointegración y Reducción de Dimensionalidad en Series Temporales Multivariantes', Cuadernos Económicos del ICE, 44, 109-126. QUAH, D. (1989), 'The Relative Importance of Permanent and Transitory Components: Identification and some Theoretical Bounds', Working paper, MIT and NBER, March 1989. STOCK, J.H. and M.WATSON (1988), 'Testing for Common Trends', Journal of the American Statistical Association 83, 1097-1107. TIAO, G.C. and M.R. GRUPE (1980), 'Hidden periodic Autoregressive-Moving Average Models to Time Series Data, Biometrika 67, 365-373. TROUTMAN, B.M. (1979), 'Some Results in Periodic Autoregression', Biometrika 66, 219-228. WALLIS, K.F.(1974), 'Seasonal Adjustment and Relations Between Variables', Journal of American Statistical Association, 69, 18-31.
dspace.entity.typePublication
relation.isAuthorOfPublication1ebcfd7a-98fe-4310-bd7a-db2e0e8d1bed
relation.isAuthorOfPublication.latestForDiscovery1ebcfd7a-98fe-4310-bd7a-db2e0e8d1bed

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
9406.pdf
Size:
761.11 KB
Format:
Adobe Portable Document Format