The Darboux transformation and algebraic deformations of shape-invariant potentials
dc.contributor.author | Gómez-Ullate Otaiza, David | |
dc.contributor.author | Kamran, Niky | |
dc.contributor.author | Milson, Robert | |
dc.date.accessioned | 2023-06-20T10:55:38Z | |
dc.date.available | 2023-06-20T10:55:38Z | |
dc.date.issued | 2004-02-06 | |
dc.description | ©Iop science. The research of DGU is supported in part by a CRM-ISM Postdoctoral Fellowship and the Spanish Ministry of Education under grant EX2002-0176. The research of NK and RM is supported by the National Science and Engineering Research Council of Canada. The authors would like to thank Prof. González-López and Prof. Gesztesy for interesting discussions, as well as the referees, who made very interesting remarks on the first version of the paper | |
dc.description.abstract | We investigate the backward Darboux transformations (addition of the lowest bound state) of shape-invariant potentials on the line, and classify the subclass of algebraic deformations, those for which the potential and the bound states are simple elementary functions. A countable family, m = 0, 1,.2,..., of deformations exists for each family of shape-invariant potentials. We prove that the m_th deformation is exactly solvable by polynomials, meaning that it leaves invariant an infinite flag of polynomial modules P_(m)^(m) Ϲ P_(-m+1)^(m) Ϲ (...) , where P_n^(m) is a codimension m subspace of <1, z,..., z_(n)>. In particular, we prove that the first (m = 1) algebraic deformation of the shape-invariant class is precisely the class of operators preserving the infinite flag of exceptional monomial modules P_n^(1) = <1, z_(2),..., z_(n)>. By construction, these algebraically deformed Hamiltonians do not have an sl(2) hidden symmetry algebra structure. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Spanish Ministry of Education | |
dc.description.sponsorship | National Science and Engineering Research Council of Canada | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/30915 | |
dc.identifier.doi | 10.1088/0305-4470/37/5/022 | |
dc.identifier.issn | 0305-4470 | |
dc.identifier.officialurl | http://dx.doi.org/10.1088/0305-4470/37/5/022 | |
dc.identifier.relatedurl | http://iopscience.iop.org | |
dc.identifier.relatedurl | http://arxiv.org/abs/quant-ph/0308062 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51463 | |
dc.issue.number | 5 | |
dc.journal.title | Journal of physics A: Mathematical and general | |
dc.language.iso | eng | |
dc.page.final | 1804 | |
dc.page.initial | 1789 | |
dc.publisher | Iop science | |
dc.relation.projectID | CRM-ISM Postdoctoral Fellowship | |
dc.relation.projectID | EX2002-0176 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Differential-operators | |
dc.subject.keyword | Schrodinger-operators | |
dc.subject.keyword | Factorization method | |
dc.subject.keyword | Quantum-mechanics | |
dc.subject.keyword | Supersymmetry | |
dc.subject.keyword | Equation | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | The Darboux transformation and algebraic deformations of shape-invariant potentials | |
dc.type | journal article | |
dc.volume.number | 37 | |
dcterms.references | [1] Darboux G, Théorie Générale des Surfaces, vol. II, Gauthier-Villars, 1888. [2] Jacobi CG, 1837 J. Reine Angew. Math. 17, 68. [3] Schrödinger E 1941 Proc. Roy. Irish Acad. 47 A, 53 (Preprint physics/9910003). [4] Infeld L and Hull T E 1951 Rev. Mod. Phys. 23 21. [5] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267. [6] Deift P and Trubowitz E 1979 Duke Math J. 45, 267. [7] Gesztesy F, Simon B and Teschl G 1996 J. d’Analyse Math. 70, 267 [8] Calogero F and Degasperis A 1982 Spectral transform and solitons I, Studies in Mathematics and its Applications (New York:Elsevier). [9] Sukumar CV 1985 J. Phys. A 18 2917. [10] Sparenberg J-M and Baye D 1995 J. Phys. A 28 5079. [11] Bagrov V G and Samsonov B F 1995 Theoret. and Math. Phys. 104 1051. [12] Gendenshtein L 1983 JETP Lett 38 356. [13] Mielnik B 1984 J. Math. Phys. 25 3387. [14] Lévai G, Baye D and Sparenberg J-M 1997 J. Phys. A 30 8257 [15] Turbiner A V 1988 Commun. Math. Phys. 118 467. [16] Kamran N and Olver P J 1990 J. Math. Anal. Appl. 145 342. [17] González-Lopez A, Kamran N and Olver P J 1993 Commun. Math. Phys. 153 117. [18] Morse P M 1929 Phys. Rev. 57 57. [19] Pöschl G and Teller E 1933 Z. Physik 83 143. [20] Milson R 1998 Internat. J. Theoret. Phys. 37 1735. [21] Gómez-Ullate D, González-López A and Rodríguez M A 2000 J. Phys. A 33 7305. [22] Post G and Turbiner A V 1995 Russian J. Math. Phys. 3 113. [23] Finkel F and Kamran N 1998 Adv. in Applied Math. 20 300. [24] Baye D, Sparenberg J-M and Lévai G 1997 Inverse and Algebraic Quantum Scattering Theory (Lecture notes in Physics 488) ed B Apagyi, G Endrédi and P Lévay (Berlin: Springer) p 295 [25] Gómez-Ullate D, Kamran N and Milson R, in preparation. [26] González-López A and Tanaka T, hep-th/0307094. [27] Shifman M 1989 Int. J. Modern Phys. A 4 3311. [28] Schminke U W 1978, Proc. Roy. Soc. Edinburgh Sec. A 80, 67. [29] Erdélyi A et al. 1953 Higher Transcendental Functions, Vol. I, (New York:McGraw-Hill). [30] Dubov S Y, Eleonskii V M and Kulagin N E 1992, Sov. Phys. JETP 75 446. [31] Bagrov V G and Samsonov B F 1997 Pramana J. Phys. 49 563. [32] Matveev V and Salle M A 1991 Darboux transformations and solitons, Springer Series in Nonlinear Dynamics (Berlin:Springer) | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- gomez-ullate29preprint.pdf
- Size:
- 239.43 KB
- Format:
- Adobe Portable Document Format