Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Corrigendum to “3-variétés qui ne sont pas des revêtements cycliques ramifiés sur S 3"

Loading...
Thumbnail Image

Full text at PDC

Publication date

1975

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Mathematical Society
Citations
Google Scholar

Citation

Abstract

Let M denote a p-fold, branched, cyclic, covering space of S3, and suppose that the three-dimensional Smith conjecture is true for p-periodic autohomeomorphisms of S3. J. S. Birman and H. M. Hilden have constructed an algorithm for deciding whether M is homeomorphic to S3 [Bull. Amer. Math. Soc. 79 (1973), 1006–1010]. Now every closed, orientable three-manifold is a three-fold covering space of S3 branched over a knot [Hilden, ibid. 80 (1974), 1243–1244], but, in the present paper, the author shows that, if Fg is a closed, orientable surface of genus g≥1, then Fg×S1 is not a p-fold, branched cyclic covering space of S3 for any p. As the author points out, this was previously known for p=2 [R. H. Fox, Mat. Hisp.-Amer. (4) 32 (1972), 158–166; the author, Bol. Soc. Mat. Mexicana (2) 18 (1973), 1–32].

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections