Powers of hypercyclic functions for some classical hypercyclic operators
dc.contributor.author | Aron, Richard M. | |
dc.contributor.author | Conejero, Jose A. | |
dc.contributor.author | Seoane-Sepúlveda, Juan B. | |
dc.date.accessioned | 2023-06-20T10:33:08Z | |
dc.date.available | 2023-06-20T10:33:08Z | |
dc.date.issued | 2007 | |
dc.description.abstract | We show that no power of any entire function is hypercyclic for Birkhoff's translation operator on H(C). On the other hand, we see that the set of functions whose powers are all hypercyclic for MacLane's differentiation operator is a G(delta)-dense subset of H(C). | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | GVA | |
dc.description.sponsorship | MEC and FEDER | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20076 | |
dc.identifier.doi | 10.1007/s00020-007-1490-4 | |
dc.identifier.issn | 0378-620X | |
dc.identifier.officialurl | http://link.springer.com/content/pdf/10.1007%2Fs00020-007-1490-4 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50463 | |
dc.issue.number | 4 | |
dc.journal.title | Integral Equations and Operator Theory | |
dc.language.iso | eng | |
dc.page.final | 596 | |
dc.page.initial | 591 | |
dc.publisher | Birkhauser Verlag | |
dc.relation.projectID | CTESPP/2005. | |
dc.relation.projectID | MTM2004-02262 | |
dc.relation.projectID | MTM2006-26627-E. | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Hypercyclic vectors | |
dc.subject.keyword | Universal functions. | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | Powers of hypercyclic functions for some classical hypercyclic operators | |
dc.type | journal article | |
dc.volume.number | 58 | |
dcterms.references | R. Aron and D. Markose, On universal functions. J. Korean Math. Soc. 41 (2004),65–76. L. Bernal-Gonz´alez and A. Bonilla, Exponential type of hypercyclic entire functions. Archiv Math. 78 (2002), 283–290. G.D. Birkhoff, Demonstration d’un theoreme elementaire sur les fonctions entieres.C. R. Acad. Sci. Paris 189 (1929),473–475. C. Blair and L.A. Rubel, A universal entire function. Amer.Math. Monthly 90 (1983), 331–332. C. Blair and L.A. Rubel, A triply universal entire function. Enseign. Math. 30 (1984),269–274. A. Bonilla and K.G. Grosse-Erdmann, On a theorem of Godefroy and Shapiro. Int.Equat. Oper. Theory 56 (2006), 151-162. K.C. Chan and J.H. Shapiro, The cyclic behavior of translation operators on Hilbert spaces of entire functions. Indiana Univ. Math. J. 40 (1991), 1421–1449. J.B. Conway, Functions of One Complex Variable. Springer-Verlag, Berlin/New York, 1978. S.M. Duyos Ruiz, Universal functions and the structure of the space of entire functions.Dokl. Akad. Nauk. SSSR 279 (1984), 792–795. G. Fernandez and A.A. Hallack, Remarks on a result about hypercyclic nonconvolution operators. J. Math. Anal. Appl. 309 (2005), 52–55. G. Godefroy and J.H. Shapiro, Operators with dense,invariant, cyclic vector manifolds.J. Funct. Anal. 98 (1991), 229–269. K.G. Grosse-Erdmann, On the universal functions of G.R. MacLane. Complex Variables Theory Appl. 15 (1990), 193–196. K.G. Grosse-Erdmann, Universal families and hypercyclic operators. Bull. Amer.Math. Soc. 36 (1999), 345–381. K.G. Grosse-Erdmann, Recent developments in hypercyclicity. Rev. R. Acad. Cien.Serie A Mat. 97 (2003), 273–286. W. Luh, V.A. Martirosian, and J Muller, Universal entire functions with gap power series. Indag. Math. (N.S.) 9 (1998), 529–536. G.R. MacLane, Sequences of derivatives and normal families. J. Analyse Math.(1952), 72–87. W. Seidel and J.L. Walsh, On approximation by euclidean and non-euclidean translations of an analytic function. Bull. Amer. Math. Soc. 47 (1941), 916–920. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1