Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Clustering and Flow Conservation Monitoring Tool for Software Defined Networks

dc.contributor.authorPuente Fernández, Jesús Antonio
dc.contributor.authorGarcía Villalba, Luis Javier
dc.contributor.authorKim, Tai-Hoon
dc.date.accessioned2023-06-17T12:38:50Z
dc.date.available2023-06-17T12:38:50Z
dc.date.issued2018-04-03
dc.description.abstractPrediction systems present some challenges on two fronts: the relation between video quality and observed session features and on the other hand, dynamics changes on the video quality. Software Defined Networks (SDN) is a new concept of network architecture that provides the separation of control plane (controller) and data plane (switches) in network devices. Due to the existence of the southbound interface, it is possible to deploy monitoring tools to obtain the network status and retrieve a statistics collection. Therefore, achieving the most accurate statistics depends on a strategy of monitoring and information requests of network devices. In this paper, we propose an enhanced algorithm for requesting statistics to measure the traffic flow in SDN networks. Such an algorithm is based on grouping network switches in clusters focusing on their number of ports to apply different monitoring techniques. Such grouping occurs by avoiding monitoring queries in network switches with common characteristics and then, by omitting redundant information. In this way, the present proposal decreases the number of monitoring queries to switches, improving the network traffic and preventing the switching overload. We have tested our optimization in a video streaming simulation using different types of videos. The experiments and comparison with traditional monitoring techniques demonstrate the feasibility of our proposal maintaining similar values decreasing the number of queries to the switches.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. Horizonte 2020
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67712
dc.identifier.doi10.3390/s18041079
dc.identifier.issn1424-8220
dc.identifier.officialurlhttps://doi.org/10.3390/s18041079
dc.identifier.relatedurlhttps://www.mdpi.com/1424-8220/18/4/1079
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12695
dc.issue.number4
dc.journal.titleSensors
dc.language.isoeng
dc.page.initial1079
dc.publisherMDPI
dc.relation.projectIDSELFNET (671672)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordclustering
dc.subject.keyworddata plane
dc.subject.keywordflow conservation
dc.subject.keywordsoftware defined networks
dc.subject.keywordstatistics
dc.subject.keywordvideostreaming
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmSoftware
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco3304.16 Diseño Lógico
dc.titleClustering and Flow Conservation Monitoring Tool for Software Defined Networks
dc.typejournal article
dc.volume.number18
dspace.entity.typePublication
relation.isAuthorOfPublication0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0
relation.isAuthorOfPublication.latestForDiscovery0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Clustering_and_Flow_Conservation_Monitoring_Tool_f.pdf
Size:
3.37 MB
Format:
Adobe Portable Document Format

Collections