Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Cathodoluminescence and scanning tunnelling spectroscopy of ZnO single crystals

dc.contributor.authorUrbieta Quiroga, Ana Irene
dc.contributor.authorFernández Sánchez, Paloma
dc.contributor.authorHardalo, C.
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.contributor.authorSekiguchi, T.
dc.date.accessioned2023-06-20T19:01:12Z
dc.date.available2023-06-20T19:01:12Z
dc.date.issued2002-04-30
dc.description© 2002 Elsevier Science B.V. International Conference on Defects: Recognition, Imaging and Physics in Semiconductors (DRIP IX) (9. 2001. Rimini. Italia). This work was supported by MCYT-DGI (Project MAT2000–2119). Ch. Hardalov thanks U. Complutense for a Sabbatical grant. Thanks are due to Professor N. Sakagami (Akita National College of Technology, Japan) and Professor S. Miyashita (Toyama Medical and Pharmaceutical University, Japan) for their contribution to crystal preparation.
dc.description.abstractBulk ZnO single crystals grown by the hydrothermal (HTT) and alkali flux methods have been investigated by means of scanning tunnelling spectroscopy (STS) and time resolved cathodoluminescence (CL). Measurements were performed in the different crystalline faces. The results from these measurements show that both, surface electrical properties and luminescent characteristics depend on the face studied. Polar O-terminated surfaces show an intrinsic conduction behaviour with a surface band gap ranging from 0.4 to 0.8 eV. Zn-terminated surfaces show mainly n-type conduction. The non-polar faces present either intrinsic or p-type behaviour. CL spectra show that the relative intensity of the different components of the deep level band also depends on the atomic structure of the face under study. This complex behaviour is clearly revealed from the time resolved spectra. The differences observed are attributed to the nature of the defects present in each case and, in particular, to different impurity incorporation processes that could be mainly controlled by the atomic configuration and polarity of the planes.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMCYT-DGI
dc.description.sponsorshipU. Complutense
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26292
dc.identifier.doi10.1016/S0921-5107(01)01062-5
dc.identifier.issn0921-5107
dc.identifier.officialurlhttp://dx.doi.org/10.1016/S0921-5107(01)01062-5
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59116
dc.journal.titleMaterials Science and Engineering B-Solid State Materials for Advanced Technology
dc.language.isoeng
dc.page.final348
dc.page.initial345
dc.publisherElsevier Science Sa
dc.relation.projectIDMAT2000–2119
dc.rights.accessRightsrestricted access
dc.subject.cdu538.9
dc.subject.keywordZinc-Oxide
dc.subject.keywordTunneling Spectroscopy
dc.subject.keywordMicroscopy
dc.subject.ucmFísica de materiales
dc.titleCathodoluminescence and scanning tunnelling spectroscopy of ZnO single crystals
dc.typejournal article
dc.volume.number91
dcterms.references[1] P.R. Emtage, J. Appl. Phys. 48 (19) (1977) 4372. [2] L.F. Lou, J. Appl. Phys. 50 (1) (1979) 555. [3] R. Einzinger, Appl. Surf. Sci. 3 (1979) 5372. [4] D.C. Reynolds, D.C. Look, B. Jogai, Solid State Commun. 99 (1996) 873. [5] P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Commun. 103 (1997) 459. [6] D.C. Reynolds, D.C. Look, B. Jogai, H. Morkoc¸, Solid State Commun. 102 (1997) 643. [7] D.C. Look, D.C. Reynolds, J.W. Hemsky, J.R. Sizelove, R.L Jones, C.W. Litton, T. Wille, G. Cantwell, W.C. Harsch Proccedings of the 10th Conference on Semiconducting and Insulat ing Materials (SIMC-X) IEEE (1999) 301. [8] Y.S. Park, D.C. Reynolds, J. Appl. Phys. 38 (1967) 756. [9] D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Solid State Commun. 150 (1998) 399 [10] N. Sakagami, K. Shibayama, Jpn. J. Appl. Phys. 20 (1981) 201. [11] N. Ohashi, T. Ohgaki, T. Nakata, T. Tsurumi, T. Sekiguchi, H. Haneda, J. Tanaka, J. Kor. Phys. Soc. 35 (1999) S287. [12] T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido, N. Sakagami, J. Cryst. Growth 214/215 (2000) 72. [13] T. Sekiguchi, N. Ohashi, Y. Terada, Jpn. J. Appl. Phys. 36 (1997) L289 [14] A. Urbieta, P. Ferna´ndez, J. Piqueras, T. Sekiguchi, Semicond. Sci. Technol. 16 (2001) 589–593. [15] F. Dom´ınguez-Adame, J. Piqueras, P. Ferna´ndez, Appl. Phys. Lett. 58 (1991) 257 [16] D.A. Bonnell, D.R. Clarke, J. Am. Ceram. Soc. 71 (1988) 629. [17] G.S. Rohrer, D.A. Bonnell, J. Am. Ceram. Soc. 73 (1990) 3026. [18] G.S. Rohrer, D.A. Bonnell, J. Vac. Sci. Technol. B9 (1991) 783. [19] P.M. Thidabo, G.S. Rohrer, D.A. Bonnell, Surf. Sci. 318 (1994) 379 [20] O.F. Schirmer, D. Zwingel, Solid State Commun. 8 (1970) 1959. [21] R.T. Cox, D. Bloch, A. Herve, R. Picard, C. Santier, Solid State Commun. 25 (1978) 77. [22] R. Kammermayer, V. Wittwer, N. Eisenreich, K. Luchner, Solid State Commun. 19 (1976) 461. [23] B.G. Wang, E.W. Shi, W.Z. Zhong, Cryst. Res. Technol. 32 (1997) 659.
dspace.entity.typePublication
relation.isAuthorOfPublicationf8df9b48-67a9-4518-9c37-a6bd1b37c150
relation.isAuthorOfPublicationdaf4b879-c4a8-4121-aaff-e6ba47195545
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscoveryf8df9b48-67a9-4518-9c37-a6bd1b37c150

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiquerasJ143.pdf
Size:
96.26 KB
Format:
Adobe Portable Document Format

Collections