Comparison of different methodologies for obtaining nickel nanoferrites

dc.contributor.authorGalindo, R.
dc.contributor.authorMenendez, N.
dc.contributor.authorCrespo del Arco, Patricia
dc.contributor.authorVelasco, V.
dc.contributor.authorBomati Miguel, O.
dc.contributor.authorDíaz Fernández, D.
dc.contributor.authorHerrasti, P.
dc.date.accessioned2023-06-19T13:29:41Z
dc.date.available2023-06-19T13:29:41Z
dc.date.issued2014-06
dc.description©2014 Elsevier B.V. All rights reserved. This investigation has been funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through MAT2012-37109-C02-01, MAT2012-37109-C02-02 and the CONSOLIDER CSD-00023 and ENE2010-21198-C04-04 Project. OBM thanks the financial support from the “Ramón y Cajal Program” of the MINECO.
dc.description.abstractNickel nanoferrites were obtained by means of four different synthetic wet-routes: co-precipitation (CP), sonochemistry (SC), sonoelectrochemistry (SE) and electrochemistry (E). The influence of the synthesis method on the structural and magnetic properties of nickel ferrite nanoparticles is studied. Although similar experimental conditions such as temperature, pH and time of synthesis were used, a strong dependence of composition and microstructure on the synthesis procedure is found, as electron microscopy, X-ray diffraction and Mössbauer spectroscopy studies reveal. Whereas by means of the CP and SC methods particles of a small size around 5–10 nm, respectively, and composed by different phases are obtained, the electrochemical routes (E and SE) allow obtaining monodisperse nanoparticles, with sizes ranging from 30 to 40 nm, and very close to stoichiometry. Magnetic characterization evidences a superparamagnetic behavior for samples obtained by CP and SC methods, whereas the electrochemical route leads to ferromagnetic ferrite nanoparticles.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipCONSOLIDER Project
dc.description.sponsorship"Ramon y Cajal Program" of the MINECO
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29098
dc.identifier.doi10.1016/j.jmmm.2014.02.091
dc.identifier.issn0304-8853
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.jmmm.2014.02.091
dc.identifier.relatedurlhttps://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33863
dc.journal.titleJournal of magnetism and magnetic materials
dc.language.isoeng
dc.page.final125
dc.page.initial118
dc.publisherElsevier Science Bv
dc.relation.projectIDMAT2012-37109- C02-01
dc.relation.projectIDMAT2012-37109-C02-02
dc.relation.projectIDCSD-00023
dc.relation.projectIDENE2010-21198-C04-04
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordCoprecipitation
dc.subject.keywordElectrochemistry
dc.subject.keywordNickel ferrite
dc.subject.keywordSonochemistry
dc.subject.keywordSonoelectrochemistry
dc.subject.ucmFísica de materiales
dc.titleComparison of different methodologies for obtaining nickel nanoferrites
dc.typejournal article
dc.volume.number361
dcterms.references[1] J.R. McCarthy, R. Weissleder., Adv. Drug Deliv. Rev. 60 (2008) 1241–1251. [2] D. Huska, J. Hubalek, V. Adam, D. Vajtr, A. Horna, L. Trnkova, L. Havel, R. Kizek., Talanta 79 (2009) 402–411. [3] J. Esquivel, I.A. Facundo, M.E. Treviño, R.G. López., J. Mater. Sci. 42 (2007) 9015–9020. [4] Q.A. Pankhurts, J. Connolly, S.K. Jones, J. Dobson., J. Phys. D: Appl. Phys. 36 (2003) R167–R181. [5] G.F. Goya, V. Grazú, M.R. Ibarra, Curr. Nanosci. 4 (2008) 1–16. [6] R. Asmatulu, M.A. Zalich, R.O. Claus, J.S. Riffle, J. Magn. Magn. Mater. 292 (2005) 108–119. [7] Y.S. Kang, S. Risbud, J.F. Rabolt, P. Stroeve, Chem. Mater. 8 (9) (1996) 2209–2211. [8] S.H. Sun, H. Zeng, J. Am. Chem. Soc. 124 (28) (2002) 8204–8205. [9] R.J. Rennard, W.L. Kehl., J. Catal. 21 (1971) 282–286. [10] N. Tsubokawa, T. Kimoto, T. Endo., J. Mol., A Catal., Chemical 101 (1995) 45–49. [11] E. Manova, T. Tsoncheva, D. Paneva, J.L. Rehspringer., K. Tenchev, L. Mitov, L. Petrov., Appl. Catal. A: Gen 317 (2007) 34–38. [12] S.P. Ghorpade, V.S. Darshane, S.G. Dixit., Appl. Catal. A 166 (1998) 135–141. [13] Y. Mu, D. Jia, Y. He, Y. Miao, H. Wu., Biosens. Bioelectron. 26 (2011) 2948–2952. [14] R. Ramanathan, S. Sugunan., Catal. Commun. 8 (2007) 1521–1526. [15] C.G. Ramankutty, S. Sugunan, Appl. Catal. A: Gen. 218 (2001) 39–51. [16] S. Singh, K.C. Barick, D. Bahadur., J. Hazard. Mater. 192 (2011) 1539–1547. [17] J.F. Liu, Z-S. Zhao, G.B. Jiang, Environ. Sci. Technol. 42 (2008) 6949–6954. [18] Y.F. Shen, J. Tang, Z.H. Nie, Y.D Wang, Y. Ren, L. Zuo., Sep. Purif. Technol. 68 (2009) 312–319. [19] Li-H. Liu, H. Dietsch, P. Schurtenberger, M. Yan, Bioconjugate Chem. 20 (2009) 1349–1355. [20] A.E. Berkowitz, R.H. Kodama, S.A. Makhlouf, F.T. Parker, F.E. Spada, E.J. McNiff , S. Foner., J. Magn. Magn. Mater. 196–197 (1999) 591–594. [21] J. Zhang, J. Shi, M. Gong., J. Solid State Chem. 182 (2009) 2135–2140. [22] Y. Cheng, Y. Zheng, Y. Wang, F. Bao, Y. Qin., J. Solid State Chem. 178 (2005) 2394–2397. [23] S. Maensiri, C. Masingboon, B. Boonchomb, S. Seraphin., Scr. Mater. 56 (2007) 797–800. [24] S.A.S. Ebrahimi, J. Azadmanjiri., J. Non-Cryst. Solids 353 (2007) 802–804. [25] M.M. Rashad, O.A. Fouad., Mater. Chem. Phys. 94 (2005) 365–370. [26] A.S. Albuquerque, J.D. Ardisson, W.A.A. Macedo, J.L. López, R. Paniago, A.I.C. Persiano., J. Magn. Magn. Mater. 226–230 (2001) 1379–1381. [27] R.A. Brand, Nucl. Instrum. Methods Phys. Res. B 28 (1987) 398. [28] S. Maensiri, C. Masingboon, B. Boonchomb, S. Seraphin., Scr. Mater. 56 (2007) 797–800. [29] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, third ed., Prentice-Hall, Englewood Cliffs, NJ, 2001. [30] P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T González-Carreño, C.J. Serna., J. Phys D: Appl. Phys. 36 (2003) R182. [31] J. Zhang, J. Shi, M. Gong., J. Solid State Chem. 182 (2009) 2135–2140. [32] C.G. Ramankutty, S. Sugunan., Appl. Catal. A: Gen. 218 (2001) 39–51. [33] N.S. McIntyre, D.G. Zetaruk., Anal. Chem. 49 (1977) 1521–1526. [34] A. Aqil, H. Serwas, J.L. Delplancke, R. Jérôme, C. Jérôme, L. Canet., Ultrason. Sonochem. 15 (2008) 1055–1061. [35] E. Manova, T. Tsoncheva, D. Paneva, J.L. Rehspringer, K. Tenchev, I. Mitov, L. Petrov., App. Catal. A: Gen. 317 (2007) 34–42. [36] N.N. Greenwod, T.C. Gibb, Mössbauer Spectroscopy, Chapman and Hall Ltd, 1971. [37] R.N. Panda, N.S. Gajbhiye, G. Balaji., J. Alloys Compd. 326 (2001) 50–53. [38] S. Morup, J. Magn. Magn. Mater. 37 (1983) 39–50. [39] S. Morup, H. Topsoe., J. Magn. Magn. Mater. 31–34 (1983) 953–954. [40] K.K. Lian, D.W. Kirk, S.J. Thorpe., J. Electrochem. Soc. 142 (1995) 3704–3709. [41] J. Zhang, J. Shi, M. Gong., J. Solid State Chem. 182 (2009) 2135–2140. [42] C.G. Ramankutty, S. Sugunan., Appl. Catal. A: Gen. 218 (2001) 39–51.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
art. 149.pdf
Size:
1.39 MB
Format:
Adobe Portable Document Format

Collections