Exterior differential system for cosmological G_2 perfect fluids and geodesic completeness
dc.contributor.author | Fernández Jambrina, Leonardo | |
dc.contributor.author | González Romero, Luis Manuel | |
dc.date.accessioned | 2023-06-20T20:10:14Z | |
dc.date.available | 2023-06-20T20:10:14Z | |
dc.date.issued | 1999-03 | |
dc.description | © Amer Physical Soc. The present work has been supported by Dirección General de Enseñanza Superior Project PB95-0371. The authors wish to thank F. J. Chinea and M. J. Pareja for valuable discussions. | |
dc.description.abstract | In this paper a new formalism based on exterior differential systems is derived for perfect-fluid spacetimes endowed with an abelian orthogonally transitive G_2 group of motions acting on spacelike surfaces. This formulation allows simplifications of Einstein equations and it can be applied for different purposes. As an example a singularity-free metric is rederived in this framework. A sufficient condition for a diagonal metric to be geodesically complete is also provided. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Dirección General de Enseñanza Superior | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/33051 | |
dc.identifier.doi | 10.1088/0264-9381/16/3/023 | |
dc.identifier.issn | 0264-9381 | |
dc.identifier.officialurl | http://dx.doi.org/10.1088/0264-9381/16/3/023 | |
dc.identifier.relatedurl | http://iopscience.iop.org | |
dc.identifier.relatedurl | http://arxiv.org/abs/gr-qc/9812039 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/59737 | |
dc.issue.number | 3 | |
dc.journal.title | Classical and quantum gravity | |
dc.language.iso | eng | |
dc.page.final | 972 | |
dc.page.initial | 953 | |
dc.publisher | IOP Publishing Ltd | |
dc.relation.projectID | PB95-0371 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Inhomogeneous cosmologies | |
dc.subject.keyword | Singularity | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | Exterior differential system for cosmological G_2 perfect fluids and geodesic completeness | |
dc.type | journal article | |
dc.volume.number | 16 | |
dcterms.references | [1] El Escorial Summer School on Gravitation and General Relativity 1992: Rotating Objects and Other Topics (eds.: F. J. Chinea and L. M. GonzálezRomero), Springer-Verlag, Berlin-New York (1993). [2] D. Kramer, H. Stephani, M. MacCallum, E. Herlt, Exact Solution’s of Einstein’s Field equations Cambridge University Press, Cambridge (1980). [3] J. Wainwright, J. Phys. A, 14, 1131, (1981). [4] J.B. Griffiths, Colliding Plane Gravitational Waves in General Relativity. Oxford University Press, (1991). [5] M. MacCallum in Solutions of Einstein’s equations: Techniques and Results (eds.: C. Hoenselaers and W. Dietz, Springer Verlag), Berlin-New York (1984). [6] A. Krasiński, Physics in an Inhomogeneous Universe, N. Copernicus Astronomical Centre, (1993). [7] J. M. M. Senovilla, Phys. Rev D53, 1799, (1996). [8] J. M. M. Senovilla, Gen. Rel. Grav. 30, 701, (1998). [9] S. W. Hawking, G. F. R. Ellis, The Large Scale Structure of Space-time, Cambridge University Press, Cambridge, (1973). [10] J. Beem, P. Ehrlich, K. Easley, Global Lorentzian Geometry, Dekker, New York (1996). [11] F. J. Chinea and L. M. González-Romero, Class. Quantum Grav. 9, 1271 (1992). [12] P. J. Greenberg, J. Math. Anal. Appl.. 29, 647 (1970). [13] L. Fernández-Jambrina, Class. Quantum Grav., 14, 3407, (1997). [14] J. Ehlers, Akad. Wiss. Lit. Mainz, Abhandl. Math.-Nat. Kl.. 11, 793 (1961), Gen. Rel. Grav. 25, 1225. 11, (1993). [15] G. F. R. Ellis, General Relativity and Cosmology, XLVII Enrico Fermi Summer School Proc., ed. R. K. Sachs, Academic Press, New York (1971). [16] F. J. Chinea, Class. Quantum Grav. 5, 135 (1988). [17] J.M.M. Senovilla in Recent Developments in Gravitation and Mathematical Physics. Proceedings of the 1st Mexican School on Gravitation and Mathematical Physics, (eds. A. Marcos, T. Mato, O,. Obreg´on, H. Quevedo), World Scientific (1996). [18] L.M. González-Romero, Ph. D. Thesis, Universidad Complutense de Madrid (1991) [19] J. Wainwright, W.C.W. Ince, B.J. Marshman, Gen. Rel. Grav. 10, 259 (1979). [20] R. Geroch, J. Math. Phys. 2, 437 (1969). [21] J. M. M. Senovilla, Phys. Rev. Lett. 64, 2219, (1990). [22] F. J. Chinea, L. Fern´andez-Jambrina, J. M. M. Senovilla, Phys. Rev D45, 481, (1992). [23] E. Ruiz, J. M. M. Senovilla, Phys. Rev D45, 1995, (1992). [24] M. Mars, Class. Quantum Grav. 12 2831, (1995). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7b2418bd-138f-46a9-942a-85df3f006089 | |
relation.isAuthorOfPublication.latestForDiscovery | 7b2418bd-138f-46a9-942a-85df3f006089 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- gonzalezromero12preprint.pdf
- Size:
- 242.49 KB
- Format:
- Adobe Portable Document Format