Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Exterior differential system for cosmological G_2 perfect fluids and geodesic completeness

dc.contributor.authorFernández Jambrina, Leonardo
dc.contributor.authorGonzález Romero, Luis Manuel
dc.date.accessioned2023-06-20T20:10:14Z
dc.date.available2023-06-20T20:10:14Z
dc.date.issued1999-03
dc.description© Amer Physical Soc. The present work has been supported by Dirección General de Enseñanza Superior Project PB95-0371. The authors wish to thank F. J. Chinea and M. J. Pareja for valuable discussions.
dc.description.abstractIn this paper a new formalism based on exterior differential systems is derived for perfect-fluid spacetimes endowed with an abelian orthogonally transitive G_2 group of motions acting on spacelike surfaces. This formulation allows simplifications of Einstein equations and it can be applied for different purposes. As an example a singularity-free metric is rederived in this framework. A sufficient condition for a diagonal metric to be geodesically complete is also provided.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDirección General de Enseñanza Superior
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33051
dc.identifier.doi10.1088/0264-9381/16/3/023
dc.identifier.issn0264-9381
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0264-9381/16/3/023
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.relatedurlhttp://arxiv.org/abs/gr-qc/9812039
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59737
dc.issue.number3
dc.journal.titleClassical and quantum gravity
dc.language.isoeng
dc.page.final972
dc.page.initial953
dc.publisherIOP Publishing Ltd
dc.relation.projectIDPB95-0371
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordInhomogeneous cosmologies
dc.subject.keywordSingularity
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleExterior differential system for cosmological G_2 perfect fluids and geodesic completeness
dc.typejournal article
dc.volume.number16
dcterms.references[1] El Escorial Summer School on Gravitation and General Relativity 1992: Rotating Objects and Other Topics (eds.: F. J. Chinea and L. M. GonzálezRomero), Springer-Verlag, Berlin-New York (1993). [2] D. Kramer, H. Stephani, M. MacCallum, E. Herlt, Exact Solution’s of Einstein’s Field equations Cambridge University Press, Cambridge (1980). [3] J. Wainwright, J. Phys. A, 14, 1131, (1981). [4] J.B. Griffiths, Colliding Plane Gravitational Waves in General Relativity. Oxford University Press, (1991). [5] M. MacCallum in Solutions of Einstein’s equations: Techniques and Results (eds.: C. Hoenselaers and W. Dietz, Springer Verlag), Berlin-New York (1984). [6] A. Krasiński, Physics in an Inhomogeneous Universe, N. Copernicus Astronomical Centre, (1993). [7] J. M. M. Senovilla, Phys. Rev D53, 1799, (1996). [8] J. M. M. Senovilla, Gen. Rel. Grav. 30, 701, (1998). [9] S. W. Hawking, G. F. R. Ellis, The Large Scale Structure of Space-time, Cambridge University Press, Cambridge, (1973). [10] J. Beem, P. Ehrlich, K. Easley, Global Lorentzian Geometry, Dekker, New York (1996). [11] F. J. Chinea and L. M. González-Romero, Class. Quantum Grav. 9, 1271 (1992). [12] P. J. Greenberg, J. Math. Anal. Appl.. 29, 647 (1970). [13] L. Fernández-Jambrina, Class. Quantum Grav., 14, 3407, (1997). [14] J. Ehlers, Akad. Wiss. Lit. Mainz, Abhandl. Math.-Nat. Kl.. 11, 793 (1961), Gen. Rel. Grav. 25, 1225. 11, (1993). [15] G. F. R. Ellis, General Relativity and Cosmology, XLVII Enrico Fermi Summer School Proc., ed. R. K. Sachs, Academic Press, New York (1971). [16] F. J. Chinea, Class. Quantum Grav. 5, 135 (1988). [17] J.M.M. Senovilla in Recent Developments in Gravitation and Mathematical Physics. Proceedings of the 1st Mexican School on Gravitation and Mathematical Physics, (eds. A. Marcos, T. Mato, O,. Obreg´on, H. Quevedo), World Scientific (1996). [18] L.M. González-Romero, Ph. D. Thesis, Universidad Complutense de Madrid (1991) [19] J. Wainwright, W.C.W. Ince, B.J. Marshman, Gen. Rel. Grav. 10, 259 (1979). [20] R. Geroch, J. Math. Phys. 2, 437 (1969). [21] J. M. M. Senovilla, Phys. Rev. Lett. 64, 2219, (1990). [22] F. J. Chinea, L. Fern´andez-Jambrina, J. M. M. Senovilla, Phys. Rev D45, 481, (1992). [23] E. Ruiz, J. M. M. Senovilla, Phys. Rev D45, 1995, (1992). [24] M. Mars, Class. Quantum Grav. 12 2831, (1995).
dspace.entity.typePublication
relation.isAuthorOfPublication7b2418bd-138f-46a9-942a-85df3f006089
relation.isAuthorOfPublication.latestForDiscovery7b2418bd-138f-46a9-942a-85df3f006089

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gonzalezromero12preprint.pdf
Size:
242.49 KB
Format:
Adobe Portable Document Format

Collections