Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Hodge theory for Riemannian solenoids.

dc.book.titleFunctional Equations in Mathematical Analysis
dc.contributor.authorMuñoz, Vicente
dc.contributor.authorPérez Marco, Ricardo
dc.contributor.editorRassias, Themistocles
dc.contributor.editorBrzdek, Janusz
dc.date.accessioned2023-06-20T05:45:19Z
dc.date.available2023-06-20T05:45:19Z
dc.date.issued2012
dc.descriptionDedicated to the Memory of the 100th Anniversary of S. M. Ulam
dc.description.abstractA measured solenoid is a compact laminated space endowed with a transversal measure. The De Rham L 2-cohomology of the solenoid is defined by using differential forms which are smooth in the leafwise directions and L 2 in the transversal direction. We develop the theory of harmonic forms for Riemannian measured solenoids, and prove that this computes the De Rham L 2-cohomology of the solenoid.This implies in particular a Poincaré duality result.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21338
dc.identifier.doi10.1007/978-1-4614-0055-4_39
dc.identifier.isbn978-1-4614-0054-7
dc.identifier.officialurlhttp://link.springer.com/chapter/10.1007%2F978-1-4614-0055-4_39
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/45446
dc.issue.number52
dc.language.isoeng
dc.page.final657
dc.page.initial633
dc.page.total748
dc.publication.placeBerlin
dc.publisherSpringer
dc.relation.ispartofseriesSpringer Optimization and Its Applications
dc.relation.projectIDMTM2007-63582.
dc.rights.accessRightsopen access
dc.subject.cdu515.1
dc.subject.keywordSolenoids
dc.subject.keywordHarmonic forms
dc.subject.keywordCohomology
dc.subject.keywordHodge theory.
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleHodge theory for Riemannian solenoids.
dc.typebook part
dcterms.referencesDodziuk, J.: Sobolev spaces of differential forms and De Rham-Hodge isomorphism. J. Diff. Geom. 16, 63–73 (1981) Heitsch, J.L.: A cohomology of foliated manifolds. Comment. Math. Helvetici 50, 197–218 (1975) Macias, E.: Continuous cohomology of linear foliations on T 2. Rediconti di Matematica Serie VII (Roma) 11, 523–528 (1991) Massey, W.S.: Singular Homology Theory. Graduate Texts in Mathematics 70, Springer-Verlag (1980) Moore, C., Schochet, C.: Global analysis on foliated spaces. Mathematical Sciences Research Institute Publications 9, Springer-Verlag (1988) Muñoz, V., Pérez-Marco, R.: Ergodic solenoids and generalized currents. Preprint. Muñoz, V., Pérez-Marco, R.: Schwartzman cycles and ergodic solenoids. Preprint. Muñoz, V., Pérez-Marco, R.: Ergodic solenoidal homology: Realization theorem. Preprint. Muñoz, V., Pérez-Marco, R.: Ergodic solenoidal homology II: Density of ergodic solenoids. Aust. J. Math. Anal. Appl. 6, no. 1, Article 11, 1–8 (2009) Reinhart, B.L.: Harmonic integrals on almost product manifolds. Trans. Amer. Math. Soc. 88, 243–276 (1958) Ruelle, D., Sullivan, D.: Currents, flows and diffeomorphisms. Topology 14, 319–327 (1975) Wells, R.O.: Differential analysis on complex manifolds. GTM 65, Second Edition, Springer-Verlag (1979)
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VMuñoz71.pdf
Size:
259.24 KB
Format:
Adobe Portable Document Format