Hodge theory for Riemannian solenoids.

dc.book.titleFunctional Equations in Mathematical Analysis
dc.contributor.authorMuñoz, Vicente
dc.contributor.authorPérez Marco, Ricardo
dc.contributor.editorRassias, Themistocles
dc.contributor.editorBrzdek, Janusz
dc.date.accessioned2023-06-20T05:45:19Z
dc.date.available2023-06-20T05:45:19Z
dc.date.issued2012
dc.descriptionDedicated to the Memory of the 100th Anniversary of S. M. Ulam
dc.description.abstractA measured solenoid is a compact laminated space endowed with a transversal measure. The De Rham L 2-cohomology of the solenoid is defined by using differential forms which are smooth in the leafwise directions and L 2 in the transversal direction. We develop the theory of harmonic forms for Riemannian measured solenoids, and prove that this computes the De Rham L 2-cohomology of the solenoid.This implies in particular a Poincaré duality result.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21338
dc.identifier.doi10.1007/978-1-4614-0055-4_39
dc.identifier.isbn978-1-4614-0054-7
dc.identifier.officialurlhttp://link.springer.com/chapter/10.1007%2F978-1-4614-0055-4_39
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/45446
dc.issue.number52
dc.language.isoeng
dc.page.final657
dc.page.initial633
dc.page.total748
dc.publication.placeBerlin
dc.publisherSpringer
dc.relation.ispartofseriesSpringer Optimization and Its Applications
dc.relation.projectIDMTM2007-63582.
dc.rights.accessRightsopen access
dc.subject.cdu515.1
dc.subject.keywordSolenoids
dc.subject.keywordHarmonic forms
dc.subject.keywordCohomology
dc.subject.keywordHodge theory.
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleHodge theory for Riemannian solenoids.
dc.typebook part
dcterms.referencesDodziuk, J.: Sobolev spaces of differential forms and De Rham-Hodge isomorphism. J. Diff. Geom. 16, 63–73 (1981) Heitsch, J.L.: A cohomology of foliated manifolds. Comment. Math. Helvetici 50, 197–218 (1975) Macias, E.: Continuous cohomology of linear foliations on T 2. Rediconti di Matematica Serie VII (Roma) 11, 523–528 (1991) Massey, W.S.: Singular Homology Theory. Graduate Texts in Mathematics 70, Springer-Verlag (1980) Moore, C., Schochet, C.: Global analysis on foliated spaces. Mathematical Sciences Research Institute Publications 9, Springer-Verlag (1988) Muñoz, V., Pérez-Marco, R.: Ergodic solenoids and generalized currents. Preprint. Muñoz, V., Pérez-Marco, R.: Schwartzman cycles and ergodic solenoids. Preprint. Muñoz, V., Pérez-Marco, R.: Ergodic solenoidal homology: Realization theorem. Preprint. Muñoz, V., Pérez-Marco, R.: Ergodic solenoidal homology II: Density of ergodic solenoids. Aust. J. Math. Anal. Appl. 6, no. 1, Article 11, 1–8 (2009) Reinhart, B.L.: Harmonic integrals on almost product manifolds. Trans. Amer. Math. Soc. 88, 243–276 (1958) Ruelle, D., Sullivan, D.: Currents, flows and diffeomorphisms. Topology 14, 319–327 (1975) Wells, R.O.: Differential analysis on complex manifolds. GTM 65, Second Edition, Springer-Verlag (1979)
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VMuñoz71.pdf
Size:
259.24 KB
Format:
Adobe Portable Document Format