Composition and optical properties of silicon oxynitride films deposited by electron cyclotron resonance

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorPrado Millán, Álvaro Del
dc.contributor.authorSan Andrés Serrano, Enrique
dc.date.accessioned2023-06-20T19:00:35Z
dc.date.available2023-06-20T19:00:35Z
dc.date.issued2002-09-26
dc.descriptionEuropean Vacuum Conference (EVC-7)/European Topical Conference on Hard Coatings (ETCHC-3)(7. 2001. Madrid). © 2002 Elsevier Science Ltd. All rights reserved. The authors acknowledge CAI de Implantación Iónica (UCM) for availability of deposition system and CAI de Espectroscopía (UCM) for availability of FTIR spectrometer.The work has been partially financed by the CICYT (Spain) under Contract No.TIC 98/0740.Technical support of G.Keil er is gratefully acknowledged.
dc.description.abstractSilicon oxynitride films covering the whole composition range from silicon nitride to silicon oxide have been deposited by electron cyclotron resonance chemical vapor deposition from SiH4, O-2 and N-2 gas mixtures. The composition of the films has been determined by heavy-ion elastic recoil detection analysis (HI-ERDA), providing absolute concentrations of all elements, including H, and by Auger electron spectroscopy. Additionally, Fourier transform infrared (FTIR) spectroscopy and ellipsometry measurements have been performed on the same samples for optical characterization. The concentration of the different species (Si, O, N and H) and the density of the films have been calculated and compared to the theoretical values for stoichiometric films. The presence of N-H bonds and non-bonded H results in a significant decrease of the Si concentration with respect to the theoretical value, especially for samples close to silicon nitride composition. The decrease of the Si concentration results in a decrease of both the N and 0 concentrations. The overall result is a decrease of the density and therefore a decrease of the refractive index with respect to stoichiometric films. The total H content determined by ERDA has been compared with the area of the FTIR N-H stretching band, which is frequently used to obtain the H content. It has been found that the calibration factor for this band depends on composition, increasing with increasing the O content.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26172
dc.identifier.doi10.1016/S0042-207X(02)00220-8
dc.identifier.issn0042-207X
dc.identifier.officialurlhttp://dx.doi.org/10.1016/S0042-207X(02)00220-8
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59098
dc.issue.number3-4
dc.journal.titleVacuum
dc.language.isoeng
dc.page.final512
dc.page.initial507
dc.publisherPergamon-Elsevier Science Ltd.
dc.relation.projectIDTIC 98/0740
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordSiN(x-h) Films
dc.subject.keywordSiOxNy Films
dc.subject.keywordTemperature.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleComposition and optical properties of silicon oxynitride films deposited by electron cyclotron resonance
dc.typejournal article
dc.volume.number67
dcterms.references[1] Ma, Y., Lucovsky, G.J., Vac Sci Technol B, 1994, 12, 2504–10. [2] Bulkin, P.V., Swart, P.L., Lacquet, B.M., J. Non-Cryst. Solids, 1995, 187, 484–8. [3] Chau, T.T., Mejia, S.R., Kao, K.C., J. Vac. Sci. Technol. B, 1992, 10, 2170–8. [4] Sassella, A., Lucarno, P., Borghesi, A., Corni, F., Rojas, S., Zanotti, L., J. Non-Cryst. Solids, 1995, 187, 395–402. [5] Martínez, F.L., del Prado, Á., Mártil, I., González-Díaz, G., Bohne, W., Fuhs, W., Röhrich, J., Selle, B., Phys. Rev. B, 2001, 63, 245. [6] Bohne, W., Röhrich, J., Röschert, G., Nucl. Instrum. Methods B, 1998, 136–138, 633. [7] Bohne, W., Fuhs, W., Röhrich, J., Selle, B., González-Díaz, G., Mártil, I., Martínez, F.L., del Prado, Á., Surf. Interface Anal., 2000, 30, 534–7. [8] del Prado, Á., Mártil, I., Fernández, M., González-Díaz, G., Thin Solid Films, 1999, 343–344, 437–40. [9] del Prado, Á., Martínez, F.L., Mártil, I., González-Díaz, G., Fernández, M., J. Vac. Sci. Technol. A, 1999, 17, 1263–8. [10] Eriksson, T.S., Granqvist, C.G., J. Appl. Phys., 1986, 60, 2081–91. [11] Martínez, F.L., del Prado, Á., Mártil, I., Bravo, D., López, F.J., J. Appl. Phys., 2000, 88, 2149–51. [12] He, L.N., Inokuma, T., Hasegawa, S., Jpn. J. Appl. Phys., 1996, 35, 1503–8. [13] Sze, S.M., Physics of semiconductor devices. New York: Wiley, 1981, p. 852. [14] Lanford, W.A., Rand, M.J., J. Appl. Phys., 1978, 49, 2473–7. [15] Denisse, C.M.M., Janssen, J.F.M., Habraken, F.H.P.M., van der Weg, W.F., Appl. Phys. Lett., 1988, 52, 1308–10.
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0
relation.isAuthorOfPublication21e27519-52b3-488f-9a2a-b4851af89a71
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,58.pdf
Size:
112.45 KB
Format:
Adobe Portable Document Format

Collections