Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Performance analysis of fuzzy aggregation operations for combining classifiers for natural textures in images

dc.book.titleHybrid Artificial Intelligent Systems, part. II
dc.contributor.authorCruz García, Jesús Manuel de la
dc.contributor.authorGuijarro Mata-García, María
dc.contributor.authorPajares Martínsanz, Gonzalo
dc.contributor.authorHerrera Caro, Pedro Javier
dc.date.accessioned2023-06-20T05:45:33Z
dc.date.available2023-06-20T05:45:33Z
dc.date.issued2011
dc.description© Springer-Verlag Berlin Heidelberg 2011. International Conference on Hybrid Artificial Intelligence Systems (HAIS 2011) (6th. May 23-25, 2011. Wroclaw, Polonia). Partial funding has also been received from DPI2009-14552-C02-01 project, supported by the Ministerio de Educación y Ciencia of Spain within the Plan Nacional de I+D+i.
dc.description.abstractOne objective for classifying pixels belonging to specific textures in natural images is to achieve the best performance in classification as possible. We propose a new unsupervised hybrid classifier. The base classifiers for hybridization are the Fuzzy Clustering and the parametric Bayesian, both supervised and selected by their well-tested performance, as reported in the literature. During the training phase we estimate the parameters of each classifier. During the decision phase we apply fuzzy aggregation operators for making the hybridization. The design of the unsupervised classifier from supervised base classifiers and the automatic computation of the final decision with fuzzy aggregation operations, make the main contributions of this paper.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación y Ciencia of Spain
dc.description.sponsorshipPlan Nacional de I+D+i
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22539
dc.identifier.isbn978-3-642-21221-5
dc.identifier.officialurlhttp://link.springer.com/chapter/10.1007/978-3-642-21222-2_22
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/45466
dc.language.isoeng
dc.page.final188
dc.page.initial180
dc.publisherSpringer-Verlag Berlín
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.relation.projectIDDPI2009-14552-C02-01
dc.rights.accessRightsopen access
dc.subject.cdu004
dc.subject.keywordClassifier Combination
dc.subject.keywordFuzzy Aggregation
dc.subject.keywordParametric Estimation
dc.subject.keywordFuzzy Clustering
dc.subject.keywordBayes Classifier
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titlePerformance analysis of fuzzy aggregation operations for combining classifiers for natural textures in images
dc.typebook part
dc.volume.number6679
dcterms.references1. Drimbarean, P.F., Whelan, P.F.: Experiments in Colour Texture Analysis. Pattern Recognition Letters 22, 1161–1167 (2003) 2. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On Combining Classifiers. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998) 3. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, Chichester (2004) 4. Valdovinos, R.M., Sánchez, J.S., Barandela, R.: Dynamic and Static Weighting in Classifier Fusion. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 59–66. Springer, Heidelberg (2005) 5. Duda, R.O., Hart, P.E., Stork, D.S.: Pattern Classification. Wiley, Chichester (2000) 6. Zimmermann, H.J.: Fuzzy Set Theory and its Applications. Kluwer Academic Publishers, Norwell (1991) 7. Guijarro, M., Pajares, G., Abreu, R.: A New Unsupervised Hybrid Classifier for Natural Textures in Images. In: HAIS, vol. 44, pp. 280–287. Springer, Heidelberg (2007) 8. Derrac, J., García, S., Herrera, F.: A First Study on the Use of Coevolutionary Algorithms for Instance and Feature Selection. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 557–564. Springer, Heidelberg (2009) 188 M. Guijarro et al. 9. Corchado, E., Abraham, A., Carvalho, A.C.P.L.F.D.: Hybrid intelligent algorithms and applications. Information Science 180(14), 2633–2634 (2010) 10. Wozniak, M., Zmyslony, M.: Designing Fusers on the Basis of Discriminants - Evolutionary and Neural Methods of Training. HAIS 1, 590–597 (2010) 11. Abraham, A., Corchado, E., Corchado, J.M.: Hybrid learning machines. Neurocomputing 72(13-15), 2729–2730 (2009)
dspace.entity.typePublication
relation.isAuthorOfPublicationd5518066-7ea8-448c-8e86-42673e11a8ee
relation.isAuthorOfPublication878e090e-a59f-4f17-b5a2-7746bed14484
relation.isAuthorOfPublication.latestForDiscoveryd5518066-7ea8-448c-8e86-42673e11a8ee

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cruzgarcia07.pdf
Size:
618.76 KB
Format:
Adobe Portable Document Format