On the nonrationality of rigid Lie algebras
dc.contributor.author | Ancochea Bermúdez, José María | |
dc.contributor.author | Goze, Michel | |
dc.date.accessioned | 2023-06-20T18:43:00Z | |
dc.date.available | 2023-06-20T18:43:00Z | |
dc.date.issued | 1999 | |
dc.description.abstract | In his thesis, Carles made the following conjecture: Every rigid Lie algebra is defined on the field Q. This was quite an interesting question because a positive answer would give a nice explanation of the fact that simple Lie algebras are defined over Q. The goal of this note is to provide a large number of examples of rigid but nonrational and nonreal Lie algebras. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20951 | |
dc.identifier.issn | 1088-6826 | |
dc.identifier.officialurl | http://www.ams.org/journals/proc/1999-127-09/S0002-9939-99-04824-8/S0002-9939-99-04824-8.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58412 | |
dc.issue.number | 9 | |
dc.journal.title | Proceedings of the American Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 2618 | |
dc.page.initial | 2611 | |
dc.publisher | America Mathematical Society | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.554.3 | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | On the nonrationality of rigid Lie algebras | |
dc.type | journal article | |
dc.volume.number | 127 | |
dcterms.references | Ancochea Bermudez, J.M., On the Rigidity of Solvable Lie Algebras. In, Deformation Theory of Algebras and Structures and Applications., Kluwer Academy Publisher, 1988, pp. 403-445. Ancochea Bermudez, J.M., Goze, M., Le rang du systéme linéaire des racines d'une algèbre lie résoluble rigide, Communications in Algebra 20 (1992), 875-887. Ancochea Bermudez, J.M., Goze, M., Algèbres de Lie rigides dont le nilradical est filiforme, C.R.A.Sc.Paris 312 (1991), 21-24. Carles, R., Variété d'algèbres de Lie, Thése Poitiers 1984. 5. Goze, M., Khakimdjanov, Y., Nilpotent Lie Algebras, Math. Appl. 361, Kluwers editeur., 1996. Goze, M., Hakimjanov, Y., Sur les algèbres de Lie nilpotentes admettant un tore de dérivations, Manuscripta Math. 84 (1994), 115-224. Goze, M., Perturbations of Lie Algebras. In, Deformation Theory of Algebras and Structure nd Applications., Kluwer Academy Publisher, 1988, pp. 403-445. Sund, T., Classification of filiform solvable Lie algebras, Communications in Algebra 22:11 (1994), 4303-4359. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8afd7745-e428-4a77-b1ff-813045b673fd | |
relation.isAuthorOfPublication.latestForDiscovery | 8afd7745-e428-4a77-b1ff-813045b673fd |
Download
Original bundle
1 - 1 of 1