Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the nonrationality of rigid Lie algebras

dc.contributor.authorAncochea Bermúdez, José María
dc.contributor.authorGoze, Michel
dc.date.accessioned2023-06-20T18:43:00Z
dc.date.available2023-06-20T18:43:00Z
dc.date.issued1999
dc.description.abstractIn his thesis, Carles made the following conjecture: Every rigid Lie algebra is defined on the field Q. This was quite an interesting question because a positive answer would give a nice explanation of the fact that simple Lie algebras are defined over Q. The goal of this note is to provide a large number of examples of rigid but nonrational and nonreal Lie algebras.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20951
dc.identifier.issn1088-6826
dc.identifier.officialurlhttp://www.ams.org/journals/proc/1999-127-09/S0002-9939-99-04824-8/S0002-9939-99-04824-8.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58412
dc.issue.number9
dc.journal.titleProceedings of the American Mathematical Society
dc.language.isoeng
dc.page.final2618
dc.page.initial2611
dc.publisherAmerica Mathematical Society
dc.rights.accessRightsrestricted access
dc.subject.cdu512.554.3
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleOn the nonrationality of rigid Lie algebras
dc.typejournal article
dc.volume.number127
dcterms.referencesAncochea Bermudez, J.M., On the Rigidity of Solvable Lie Algebras. In, Deformation Theory of Algebras and Structures and Applications., Kluwer Academy Publisher, 1988, pp. 403-445. Ancochea Bermudez, J.M., Goze, M., Le rang du systéme linéaire des racines d'une algèbre lie résoluble rigide, Communications in Algebra 20 (1992), 875-887. Ancochea Bermudez, J.M., Goze, M., Algèbres de Lie rigides dont le nilradical est filiforme, C.R.A.Sc.Paris 312 (1991), 21-24. Carles, R., Variété d'algèbres de Lie, Thése Poitiers 1984. 5. Goze, M., Khakimdjanov, Y., Nilpotent Lie Algebras, Math. Appl. 361, Kluwers editeur., 1996. Goze, M., Hakimjanov, Y., Sur les algèbres de Lie nilpotentes admettant un tore de dérivations, Manuscripta Math. 84 (1994), 115-224. Goze, M., Perturbations of Lie Algebras. In, Deformation Theory of Algebras and Structure nd Applications., Kluwer Academy Publisher, 1988, pp. 403-445. Sund, T., Classification of filiform solvable Lie algebras, Communications in Algebra 22:11 (1994), 4303-4359.
dspace.entity.typePublication
relation.isAuthorOfPublication8afd7745-e428-4a77-b1ff-813045b673fd
relation.isAuthorOfPublication.latestForDiscovery8afd7745-e428-4a77-b1ff-813045b673fd

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ancochea24.pdf
Size:
219.32 KB
Format:
Adobe Portable Document Format

Collections