Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Embedded Feature Selection for Robust Probability Learning Machines

dc.contributor.authorCarrasco, Miguel
dc.contributor.authorIvorra, Benjamín Pierre Paul
dc.contributor.authorLópez, Julio
dc.contributor.authorRamos Del Olmo, Ángel Manuel
dc.date.accessioned2024-07-23T10:45:19Z
dc.date.available2024-07-23T10:45:19Z
dc.date.issued2024-07-19
dc.description.abstractFeature selection is essential for building effective machine learning models in binary classification. Eliminating unnecessary features can reduce the risk of overfitting and improve classification performance. Moreover, the data we handle always has a stochastic component, making it important to have robust models that are insensitive to data perturbations. Although there are numerous methods and tools for feature selection, relatively few works deal with embedded feature selection performed with robust classification models. In this work, we introduce robust classifiers with integrated feature selection capabilities, utilizing probability machines based on different penalization techniques such as the L1-norm or the elastic-net, combined with a novel Direct Feature Elimination process. Numerical experiments on standard databases demonstrate the effectiveness and robustness of the proposed models in classification tasks with a reduced number of features, using original indicators.The study also discusses the trade-offs in combining different penalties to select the most relevant features while minimizing empirical risk.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.statusunpub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/107037
dc.language.isoeng
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106337GB-I00/ES/MODELIZACION, SIMULACION NUMERICA Y OPTIMIZACION PARA VARIOS PROBLEMAS DE INTERES GENERAL/
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordCobb-Douglas
dc.subject.keywordMinimax Probability Machine
dc.subject.keywordMinimum Error Minimax Probability Machine
dc.subject.keywordSecond-Order Cone Programming
dc.subject.keywordSupport Vector Machines
dc.subject.keywordFeature Selection
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207.99 Otras
dc.titleEmbedded Feature Selection for Robust Probability Learning Machines
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication6d5e1204-9b8a-40f4-b149-02d32e0bbed2
relation.isAuthorOfPublication581c3cdf-f1ce-41e0-ac1e-c32b110407b1
relation.isAuthorOfPublication.latestForDiscovery6d5e1204-9b8a-40f4-b149-02d32e0bbed2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
main_L1 - preprint.pdf
Size:
1.8 MB
Format:
Adobe Portable Document Format

Collections