Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Approximating ergodic average reward continuous: time controlled Markov chains

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2010

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Citations
Google Scholar

Citation

T. Prieto-Rumeau and J. M. Lorenzo, "Approximating Ergodic Average Reward Continuous-Time Controlled Markov Chains," in IEEE Transactions on Automatic Control, vol. 55, no. 1, pp. 201-207, Jan. 2010, doi: 10.1109/TAC.2009.2033848. keywords: {Convergence;Optimal control;State-space methods;Statistics;Operations research;Process control;Adaptive control;Terminology;Approximation of control problems;Ergodic Markov decision processes (MDPs);policy iteration algorithm},

Abstract

We study the approximation of an ergodic average reward continuous-time denumerable state Markov decision process (MDP) by means of a sequence of MDPs. Our results include the convergence of the corresponding optimal policies and the optimal gains. For a controlled upwardly skip-free process, we show some computational results to illustrate the convergence theorems

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections