Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Approximating ergodic average reward continuous: time controlled Markov chains

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2010

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Citations
Google Scholar

Citation

T. Prieto-Rumeau and J. M. Lorenzo, "Approximating Ergodic Average Reward Continuous-Time Controlled Markov Chains," in IEEE Transactions on Automatic Control, vol. 55, no. 1, pp. 201-207, Jan. 2010, doi: 10.1109/TAC.2009.2033848. keywords: {Convergence;Optimal control;State-space methods;Statistics;Operations research;Process control;Adaptive control;Terminology;Approximation of control problems;Ergodic Markov decision processes (MDPs);policy iteration algorithm},

Abstract

We study the approximation of an ergodic average reward continuous-time denumerable state Markov decision process (MDP) by means of a sequence of MDPs. Our results include the convergence of the corresponding optimal policies and the optimal gains. For a controlled upwardly skip-free process, we show some computational results to illustrate the convergence theorems

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections