Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

The Tychonoff product theorem for compact Hausdorff spaces does not imply the axiom of choice: a new proof. Equivalent propositions

dc.contributor.authorRodríguez Salinas, Baltasar
dc.contributor.authorBombal Gordón, Fernando
dc.date.accessioned2023-06-21T02:03:30Z
dc.date.available2023-06-21T02:03:30Z
dc.date.issued1973
dc.description.abstractThe main result of this paper is expressed by its title. The authors also show that the Tihonov product theorem for compact Hausdorff spaces is logically equivalent to some basic theorems in topology and functional analysis, commonly proved using the axiom of choice
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17842
dc.identifier.issn0010-0757
dc.identifier.officialurlhttp://www.collectanea.ub.edu/index.php/Collectanea/article/view/3413/4093
dc.identifier.relatedurlhttp://www.collectanea.ub.edu/index.php/Collectanea
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64735
dc.journal.titleCollectanea mathematica
dc.language.isoeng
dc.page.final230
dc.page.initial219
dc.publisherSpringer
dc.rights.accessRightsrestricted access
dc.subject.cdu510.22
dc.subject.keywordProduct spaces
dc.subject.keywordSet theory
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleThe Tychonoff product theorem for compact Hausdorff spaces does not imply the axiom of choice: a new proof. Equivalent propositions
dc.typejournal article
dc.volume.number24
dcterms.referencesBACHMAN, G. and NARICI, L.: Functional Analysis. Academic ess, NewYork, 1966. BADRIKIAN, A.: Seminaire sur les Fonctions Aléatoires Linéaires et les Mesures Cylindriques. Lectures Notes in Math., 139, Springer-Verlag, Berlin, 1970. BOURBAKI, N.: Elements of Mathematics. General Topology, Part.1. Act.Sct. et Ind., 0637, Hermann, Paris, 1966. COHEN, P. J.: Set Theory and the Continuum Hypotesis. W. A. Benjamin,New York, 1966. DAY, M. M.: Normed Linear Spaces. Springer-Verlag, Berlín, 1962. v. DALEN, D. and MONNA, A. F.: Sets and Integration. Walter-Noordhoff, Groningen, 1972. FELGNBR, D.: Models of ZF-Set Theory. Lectures Notes in Mafu., 223,Springer-Verlag, Berlin, 1971. HALPERN, J. D.: The independence of the axiom of choice from the Boolean Prime Ideal Theorem. Fund. Mafu. 55, (1964) 57-66. HAT,PERN, J. D. and LÉVY, A.: The Ordering-Theorem does not imPly the axiom of choice. Notices A.M.S. 11, (1964), 56 HALPERN, J. D. and LÉvy, A.: The Boolean Prime Ideal Theorem does not imPly the axiom of choice. Proceedings of Symp. in pure Math. vol. XIII, Parto I, p. 38-134 (A.M.S. Providence 1971). HENKIN, L. A.: Metamathematical tlzeorems equivalent to the prime ideal theorems for Boolean algebras. Bu11. A.M.S. 60 (1954), 388. HORVÁTH, J.: Topological Vector Spaces and Distributions, l. AddisonWesley Publ. Co. Massachusetts, 1966. KAKUTANI, S.: Concrete representation 01 abstract (M)-spaces. Aun. of Math., 42, (1941), 994-1024. KELLEY, J. L.: The Tychonoll product theorem imPlies the axiom of choice. Fund. Math., 37 (1950), 75-76. KELLEY J. L.: Banach spaces with the extension property Trans. Amer, Math. Soc., 72 (1952), 323-325. LOS, J. and RYLL-NARDZEWSKI, E.: On the application of Tychonolf's theorem in mathematical Prools. Fund. Math. 38 (1957), 233-237. LOS, J. and RYLL-NARDZEWSKI, C.: Ellectiveness 01 the representation theory lor Boolean algebras. Fund. Math. 41 (1954), 49-56. NACHBIN, L.: A theorem 01 the Hahn-Banach type. Trans. Amer. Math.Soc., 68 (1950), 28-46. MARcZEWSKI, E. (SZPILRAJN): Sur l'extension de l'ordre partiel. Fund. Math. 16 (1930), 386-389. RUBIN, J. E.: Set Theory lor the Mathematician. Rolden-Day, San Francisco, 1967. RUBIN, R. and Scon, D.: Some topological theorems equivalent to the Boolean prime ideal theorem. BuI!. A.M.S. 60 (1954), 389. SCHAEFER, R. R.: Topological Vector Spaces. Springer-Verlag, Berlin, 1970. SCOTT, D.: Prime Ideal theorems lor rings, lattices and Boolean algebras. Bull. A.M.S. 60 (1954), 390. SIKORSKI, R.: Boolean algebras (Appendix). Springer-Verlag, Berlin, 1964. SIERPINSKI, W.: Zarys terji mnogosci. Warszawa, 1928. TARSKI, A.: Prime ideal theorems lor Boolean algebras and the axiom of choice. Bull. A.M.S. 60 (1954), 390. TARSKI, A.: Prime ideal theorems lor set algebras and ordering principIes. Bull. A.M.S. 60 (1954), 391. TARSKI, A.: Prime ideal theorems lor set algebras and the axiom of choice. Bull. A.M.S. 60 (1954), 391.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bombal29.pdf
Size:
852.57 KB
Format:
Adobe Portable Document Format

Collections