Aplicación de técnicas de machine learning y oversampling para la predicción del riesgo cardiovascular en adultos en España

dc.contributor.advisorPineda San Juan, Silvia
dc.contributor.authorPerpiñán Pérez, Rocío
dc.date.accessioned2025-11-10T18:21:21Z
dc.date.available2025-11-10T18:21:21Z
dc.date.defense2025-09
dc.date.issued2025
dc.degree.titleGrado en estadística aplicada
dc.description.abstractThis work focuses on the development and evaluation of predictive models to estimate the risk of myocardial infarction in the adult Spanish population, using microdata from the 2017 Spanish National Health Survey. The main objective is to identify individuals at higher cardiovascular risk through clinical, demographic, and lifestyle variables, in order to contribute to early detection and more effective medical interventions. Given the significant class imbalance in the dataset (low prevalence of infarction cases), resampling techniques were applied using the SMOTE algorithm in 50-50 and 60-40 configurations, following stratification by sex. Predictive models were then built using LASSO regression and Random Forest (RF), with performance assessed using metrics such as sensitivity, specificity, and the area under the ROC curve (AUC). The resulting models showed good predictive performance, and a mixed factorial analysis helped uncover relevant patterns among variables. The findings of this study may support clinical decision-making and promote more effective prevention strategies for cardiovascular diseases.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.statusunpub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/125919
dc.language.isospa
dc.page.total63
dc.rights.accessRightsopen access
dc.subject.cdu519.2
dc.subject.cdu519.22-7
dc.subject.cdu614
dc.subject.cdu616.12
dc.subject.keywordCardiovascular risk
dc.subject.keywordMyocardial infarction
dc.subject.keywordMachine learning
dc.subject.keywordSMOTE
dc.subject.keywordRandom Forest
dc.subject.keywordLASSO regression
dc.subject.keywordPublic health
dc.subject.ucmEstadística
dc.subject.ucmEstadística aplicada
dc.subject.ucmCardiología
dc.subject.ucmSalud pública (Medicina)
dc.subject.unesco1209 Estadística
dc.subject.unesco1209.03 Análisis de Datos
dc.subject.unesco3205.01 Cardiología
dc.subject.unesco3212 Salud Publica
dc.titleAplicación de técnicas de machine learning y oversampling para la predicción del riesgo cardiovascular en adultos en España
dc.typebachelor thesis
dc.type.hasVersionAO
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Aplicación de técnicas de machine learning.pdf
Size:
4.26 MB
Format:
Adobe Portable Document Format