Mathematical formulation and validation of the Be-FAST model for Classical Swine Fever Virus spread between and within farms
dc.contributor.author | Ivorra, Benjamín Pierre Paul | |
dc.contributor.author | Martínez López, Beatriz | |
dc.contributor.author | Sánchez-Vizcaíno Rodríguez, José Manuel | |
dc.contributor.author | Ramos Del Olmo, Ángel Manuel | |
dc.date.accessioned | 2023-06-19T13:28:53Z | |
dc.date.available | 2023-06-19T13:28:53Z | |
dc.date.issued | 2014 | |
dc.description.abstract | Classical Swine Fever is a viral disease of pigs that causes severe restrictions on the movement of pigs and pig products in the affected areas. The knowledge of its spread patterns and risk factors would help to implement specific measures for controlling future outbreaks. In this article, we describe in detail a spatial hybrid model, called Be-FAST, based on the combination of a stochastic Individual-Based model (modeling the interactions between the farms, considered as individuals) for between-farm spread with a Susceptible-Infected model for within-farm spread, to simulate the spread of this disease and identify risk zones in a given region. First, we focus on the mathematical formulation of each component of the model. Then, in order to validate Be-FAST, we perform various numerical experiments considering the Spanish province of Segovia. Obtained results are compared with the ones given by two other Individual-Based models and real outbreaks data from Segovia and The Netherlands | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (España) | |
dc.description.sponsorship | Banco de Santander | |
dc.description.sponsorship | Universidad Complutense de Madrid (Ref. 910480) | |
dc.description.sponsorship | Fondo Social Europeo | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/28900 | |
dc.identifier.doi | 10.1007/s10479-012-1257-4 | |
dc.identifier.issn | 0254-5330 | |
dc.identifier.officialurl | http://link.springer.com/article/10.1007%2Fs10479-012-1257-4 | |
dc.identifier.relatedurl | http://link.springer.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/33827 | |
dc.issue.number | 1 | |
dc.journal.title | Annals of operations research | |
dc.language.iso | eng | |
dc.page.final | 47 | |
dc.page.initial | 25 | |
dc.publisher | Springer | |
dc.relation.projectID | QUIMAPRES-CM (S2009/PPQ-1551) | |
dc.relation.projectID | MTM2008-04621 | |
dc.relation.projectID | MTM2011-22658 | |
dc.relation.projectID | Research group MOMAT (Ref. 910480) | |
dc.relation.projectID | CONS-C6- 0356 of the I-MATH Proyecto Ingenio Mathematica | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 636.4:616-036.22 | |
dc.subject.cdu | 519.8:591.2 | |
dc.subject.keyword | Epidemiological modeling | |
dc.subject.keyword | Individual-Based model | |
dc.subject.keyword | Susceptible-Infected model | |
dc.subject.keyword | Model validation | |
dc.subject.keyword | Classical Swine Fever | |
dc.subject.ucm | Investigación operativa (Matemáticas) | |
dc.subject.ucm | Ganado porcino | |
dc.subject.unesco | 1207 Investigación Operativa | |
dc.subject.unesco | 3104.08 Porcinos | |
dc.title | Mathematical formulation and validation of the Be-FAST model for Classical Swine Fever Virus spread between and within farms | |
dc.type | journal article | |
dc.volume.number | 219 | |
dcterms.references | Anderson, R., & May, R. (1979). Population biology of infectious diseases: Part 1. Nature, 280, 361–367. Brauer, F., & Castillo-Chavez, C. (2001). Mathematical models in population biology and epidemiology. Berlin: Springer. DeAngelis, D.,& Gross, L. (1991). Individual-based models and approaches in ecology. New York: Chapman and Hall. DeRose, L., & Padua, D. (1999). Techniques for the translation of Matlab programs into Fortran 90. ACM Trans. Program. Lang. Syst., 21(2), 285–322. Edwards, S., Fukusho, A., Lefevre, P., Lipowski, A., Pejsak, Z., Roehe, P., &Westergaard, J. (2000). Classical Swine Fever: the global situation. Vet. Microbiol., 7(3), 103–109. E.S.R.I. (2012). ArcGIS. http://www.esri.com/software/arcgis/. Elbers, A., Stegeman, A., Moser, H., Ekker, H., Smak, J., & Pluimers, H. (1999). The CSF epidemic 1997–1998 in The Netherlands: descriptive epidemiology. Prev. Vet. Med., 4, 157–184. Fernández, E., Ivorra, B., Ramos, A., Martínez-Lopez, B., & Sánchez-Vizcaíno, J. (2011). Diseño de un modelo económico y de planes de control para una epidemia de Peste Porcina Clásica. Preprint de la Universidad Complutense de Madrid. http://www.ucm.es/centros/cont/descargas/documento28250.pdf. Jalvingh, A., Nielen, M., Maurice, H., Stegeman, A., Elbers, A.R., & Dijkhuizen, A. (1999). Spatial and stochastic simulation to evaluate the impact of events and control measures on the 1997–1998 CSF epidemic in The Netherlands. Prev. Vet. Med., 42, 271–295. J.C.L. (2008). Junta de Castilla y Leon—Agricultura y Ganadería, expert opinion elicitation performed for FMD and CSF. http://www.jcyl.es. Kartsen, S., Rave, G., & Krieter, J. (2005a). Monte Carlo simulation of CSF epidemics and control I. General concepts and description of the model. Vet. Microbiol., 108, 187–198. Kartsen, S., Rave, G., & Krieter, J. (2005b). Monte Carlo simulation of CSF epidemics and control II. Validation of the model. Vet. Microbiol., 108, 199–205. Kartsen, S., Rave, G., Teuffert, J., & Krieter, J. (2007). Evaluation of measures for the control of CSF using a simulation model. Arch. Tierz., 50, 92–104. Klinkenberg, D., DeBree, J., Laevens, H., & DeJong, M. C. M. (2002).Within- and between-pen transmission of Classical Swine Fever Virus: a new method to estimate the basic reproduction ratio from transmission experiments. Epidemiol. Infect., 128, 293–299. Koenen, F., Van Caenegem, G., Vermeersch, J., Vandenheede, J., & Deluyker, H. (1996). Epidemiological characteristics of an outbreak of Classical Swine Fever in an area of high pig density. Vet. Rec., 139(15), 367–371. Lyytikäinen, T., Niemi, J., Sahlström, L., Virtanen, T., & Lehtonen, H. (2011). The spread o Foot-and-Mouth Disease (FMD) within Finland and emergency vaccination in case of an epidemic outbreak. Finnish Food Safety Authority Evira, Helsinki. Research Reports, 1/2011. http://www.evira.fi/portal/en/evira/publications/?a=view&productId=240. Mangen, M., Nielen, M., & Burrell, A. (2002). Simulated effect of pig-population density on epidemic size and choice of control strategy for Classical Swine Fever epidemics in The Netherlands. Prev. Vet. Med.,56(2), 141–163. M.A.P.A. (2006). Ministerio de Agricultura, Pesca y Alimentación, Manual práctico de actuaciones contra la PPC. http://rasve.mapa.es/Publica/InformacionGeneral/Documentos/Manuales/Manual%20PPC%20enero%202011.pdf. Martínez-López, B. (2009). Desarrollo de modelos epidemiológicos cuantitativos para el análisis del riesgo de introducción y difusión potencial de los virus de la Fiebre Aftosa y de la Peste Porcina Clásica en España. PhD thesis, Univ. Complutense de Madrid, Spain. Martínez-López, B., Ivorra, B., Ramos, A. M., & Sánchez-Vizcaíno, J. (2011). A novel spatial and stochastic model to evaluate the within and between farm transmission of CSF Virus: 1. General concepts and description of the model. Vet. Microbiol., 147(3), 300–309. Martínez-López, B., Ivorra, B., Ramos, A. M., & Sánchez-Vizcaíno, J. (2012). A novel spatial and stochastic model to evaluate the within and between farm transmission of CSF Virus: 2.Model sensitivity analysis. Vet. Microbiol., 155(1), 21–30. Martínez-López, B., Pérez, A., & Sánchez-Vizcaíno, J. (2009). A stochastic model to quantify the risk for Classical Swine Fever Virus introduction through import of domestic and wild boars into Spain. Epidemiol. Infect., 137(10), 1505–1515. Massey Univ. (2012). InterSpread Plus. http://www.interspreadplus.com. MathWorks (2012). Matlab. www.mathworks.com/products/matlab/. Mintiens, K., Laevens, H., Dewulf, J., Boelaert, F., Verloo, D., & Koenen, F. (2003). Risk analysis of the spread of CSF virus through neighborhood infections for different regions in Belgium. Prev. Vet. Med., 60(1), 27–36. Moennig, V. (2000). Introduction to Classical Swine Fever: virus, disease and control policy. Vet. icrobiol., 73(2), 93–102. Niemi, J., Lehtonen, H., Pietola, K., Lyytikäinen, T., & Raulo, S. (2008). Economic implications of potential Classical Swine Fever outbreaks for Finnish pig production sector. Prev. Vet. Med., 84, 194–212. Ribbens, S., Dewulf, J., Koenen, F., Laevens, H., & de Kruif, A. (2004). Transmission of Classical Swine Fever. A review. Vet. Q., 26, 146–155. Sanson, R. (1993). The development of a decision support system for an animal disease emergency. PhD thesis, Massey University, New Zealand. Stegeman, A., Elbers, A., Bouma, A., & DeJong, M. (2002). Rate of inter-farm transmission of Classical Swine Fever Virus by different types of contact during the 1997–1998 epidemic in The Netherlands. Epidemiol. Infect., 128, 285–291. Stegeman, A., Elbers, A., Smak, J., & DeJong, M. (1999). Quantification of the transmission of Classical Swine Fever Virus between farms during the 1997–1998 epidemic in The Netherlands. Prev. Vet. Med., 42, 219–234. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6d5e1204-9b8a-40f4-b149-02d32e0bbed2 | |
relation.isAuthorOfPublication | b078d9ce-ccce-49e2-a4e9-0ce85eca877e | |
relation.isAuthorOfPublication | 581c3cdf-f1ce-41e0-ac1e-c32b110407b1 | |
relation.isAuthorOfPublication.latestForDiscovery | b078d9ce-ccce-49e2-a4e9-0ce85eca877e |
Download
Original bundle
1 - 1 of 1