Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Mathematical formulation and validation of the Be-FAST model for Classical Swine Fever Virus spread between and within farms

dc.contributor.authorIvorra, Benjamín Pierre Paul
dc.contributor.authorMartínez López, Beatriz
dc.contributor.authorSánchez-Vizcaíno Rodríguez, José Manuel
dc.contributor.authorRamos Del Olmo, Ángel Manuel
dc.date.accessioned2023-06-19T13:28:53Z
dc.date.available2023-06-19T13:28:53Z
dc.date.issued2014
dc.description.abstractClassical Swine Fever is a viral disease of pigs that causes severe restrictions on the movement of pigs and pig products in the affected areas. The knowledge of its spread patterns and risk factors would help to implement specific measures for controlling future outbreaks. In this article, we describe in detail a spatial hybrid model, called Be-FAST, based on the combination of a stochastic Individual-Based model (modeling the interactions between the farms, considered as individuals) for between-farm spread with a Susceptible-Infected model for within-farm spread, to simulate the spread of this disease and identify risk zones in a given region. First, we focus on the mathematical formulation of each component of the model. Then, in order to validate Be-FAST, we perform various numerical experiments considering the Spanish province of Segovia. Obtained results are compared with the ones given by two other Individual-Based models and real outbreaks data from Segovia and The Netherlands
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipBanco de Santander
dc.description.sponsorshipUniversidad Complutense de Madrid (Ref. 910480)
dc.description.sponsorshipFondo Social Europeo
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28900
dc.identifier.doi10.1007/s10479-012-1257-4
dc.identifier.issn0254-5330
dc.identifier.officialurlhttp://link.springer.com/article/10.1007%2Fs10479-012-1257-4
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33827
dc.issue.number1
dc.journal.titleAnnals of operations research
dc.language.isoeng
dc.page.final47
dc.page.initial25
dc.publisherSpringer
dc.relation.projectIDQUIMAPRES-CM (S2009/PPQ-1551)
dc.relation.projectIDMTM2008-04621
dc.relation.projectIDMTM2011-22658
dc.relation.projectIDResearch group MOMAT (Ref. 910480)
dc.relation.projectIDCONS-C6- 0356 of the I-MATH Proyecto Ingenio Mathematica
dc.rights.accessRightsrestricted access
dc.subject.cdu636.4:616-036.22
dc.subject.cdu519.8:591.2
dc.subject.keywordEpidemiological modeling
dc.subject.keywordIndividual-Based model
dc.subject.keywordSusceptible-Infected model
dc.subject.keywordModel validation
dc.subject.keywordClassical Swine Fever
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.ucmGanado porcino
dc.subject.unesco1207 Investigación Operativa
dc.subject.unesco3104.08 Porcinos
dc.titleMathematical formulation and validation of the Be-FAST model for Classical Swine Fever Virus spread between and within farms
dc.typejournal article
dc.volume.number219
dcterms.referencesAnderson, R., & May, R. (1979). Population biology of infectious diseases: Part 1. Nature, 280, 361–367. Brauer, F., & Castillo-Chavez, C. (2001). Mathematical models in population biology and epidemiology. Berlin: Springer. DeAngelis, D.,& Gross, L. (1991). Individual-based models and approaches in ecology. New York: Chapman and Hall. DeRose, L., & Padua, D. (1999). Techniques for the translation of Matlab programs into Fortran 90. ACM Trans. Program. Lang. Syst., 21(2), 285–322. Edwards, S., Fukusho, A., Lefevre, P., Lipowski, A., Pejsak, Z., Roehe, P., &Westergaard, J. (2000). Classical Swine Fever: the global situation. Vet. Microbiol., 7(3), 103–109. E.S.R.I. (2012). ArcGIS. http://www.esri.com/software/arcgis/. Elbers, A., Stegeman, A., Moser, H., Ekker, H., Smak, J., & Pluimers, H. (1999). The CSF epidemic 1997–1998 in The Netherlands: descriptive epidemiology. Prev. Vet. Med., 4, 157–184. Fernández, E., Ivorra, B., Ramos, A., Martínez-Lopez, B., & Sánchez-Vizcaíno, J. (2011). Diseño de un modelo económico y de planes de control para una epidemia de Peste Porcina Clásica. Preprint de la Universidad Complutense de Madrid. http://www.ucm.es/centros/cont/descargas/documento28250.pdf. Jalvingh, A., Nielen, M., Maurice, H., Stegeman, A., Elbers, A.R., & Dijkhuizen, A. (1999). Spatial and stochastic simulation to evaluate the impact of events and control measures on the 1997–1998 CSF epidemic in The Netherlands. Prev. Vet. Med., 42, 271–295. J.C.L. (2008). Junta de Castilla y Leon—Agricultura y Ganadería, expert opinion elicitation performed for FMD and CSF. http://www.jcyl.es. Kartsen, S., Rave, G., & Krieter, J. (2005a). Monte Carlo simulation of CSF epidemics and control I. General concepts and description of the model. Vet. Microbiol., 108, 187–198. Kartsen, S., Rave, G., & Krieter, J. (2005b). Monte Carlo simulation of CSF epidemics and control II. Validation of the model. Vet. Microbiol., 108, 199–205. Kartsen, S., Rave, G., Teuffert, J., & Krieter, J. (2007). Evaluation of measures for the control of CSF using a simulation model. Arch. Tierz., 50, 92–104. Klinkenberg, D., DeBree, J., Laevens, H., & DeJong, M. C. M. (2002).Within- and between-pen transmission of Classical Swine Fever Virus: a new method to estimate the basic reproduction ratio from transmission experiments. Epidemiol. Infect., 128, 293–299. Koenen, F., Van Caenegem, G., Vermeersch, J., Vandenheede, J., & Deluyker, H. (1996). Epidemiological characteristics of an outbreak of Classical Swine Fever in an area of high pig density. Vet. Rec., 139(15), 367–371. Lyytikäinen, T., Niemi, J., Sahlström, L., Virtanen, T., & Lehtonen, H. (2011). The spread o Foot-and-Mouth Disease (FMD) within Finland and emergency vaccination in case of an epidemic outbreak. Finnish Food Safety Authority Evira, Helsinki. Research Reports, 1/2011. http://www.evira.fi/portal/en/evira/publications/?a=view&productId=240. Mangen, M., Nielen, M., & Burrell, A. (2002). Simulated effect of pig-population density on epidemic size and choice of control strategy for Classical Swine Fever epidemics in The Netherlands. Prev. Vet. Med.,56(2), 141–163. M.A.P.A. (2006). Ministerio de Agricultura, Pesca y Alimentación, Manual práctico de actuaciones contra la PPC. http://rasve.mapa.es/Publica/InformacionGeneral/Documentos/Manuales/Manual%20PPC%20enero%202011.pdf. Martínez-López, B. (2009). Desarrollo de modelos epidemiológicos cuantitativos para el análisis del riesgo de introducción y difusión potencial de los virus de la Fiebre Aftosa y de la Peste Porcina Clásica en España. PhD thesis, Univ. Complutense de Madrid, Spain. Martínez-López, B., Ivorra, B., Ramos, A. M., & Sánchez-Vizcaíno, J. (2011). A novel spatial and stochastic model to evaluate the within and between farm transmission of CSF Virus: 1. General concepts and description of the model. Vet. Microbiol., 147(3), 300–309. Martínez-López, B., Ivorra, B., Ramos, A. M., & Sánchez-Vizcaíno, J. (2012). A novel spatial and stochastic model to evaluate the within and between farm transmission of CSF Virus: 2.Model sensitivity analysis. Vet. Microbiol., 155(1), 21–30. Martínez-López, B., Pérez, A., & Sánchez-Vizcaíno, J. (2009). A stochastic model to quantify the risk for Classical Swine Fever Virus introduction through import of domestic and wild boars into Spain. Epidemiol. Infect., 137(10), 1505–1515. Massey Univ. (2012). InterSpread Plus. http://www.interspreadplus.com. MathWorks (2012). Matlab. www.mathworks.com/products/matlab/. Mintiens, K., Laevens, H., Dewulf, J., Boelaert, F., Verloo, D., & Koenen, F. (2003). Risk analysis of the spread of CSF virus through neighborhood infections for different regions in Belgium. Prev. Vet. Med., 60(1), 27–36. Moennig, V. (2000). Introduction to Classical Swine Fever: virus, disease and control policy. Vet. icrobiol., 73(2), 93–102. Niemi, J., Lehtonen, H., Pietola, K., Lyytikäinen, T., & Raulo, S. (2008). Economic implications of potential Classical Swine Fever outbreaks for Finnish pig production sector. Prev. Vet. Med., 84, 194–212. Ribbens, S., Dewulf, J., Koenen, F., Laevens, H., & de Kruif, A. (2004). Transmission of Classical Swine Fever. A review. Vet. Q., 26, 146–155. Sanson, R. (1993). The development of a decision support system for an animal disease emergency. PhD thesis, Massey University, New Zealand. Stegeman, A., Elbers, A., Bouma, A., & DeJong, M. (2002). Rate of inter-farm transmission of Classical Swine Fever Virus by different types of contact during the 1997–1998 epidemic in The Netherlands. Epidemiol. Infect., 128, 285–291. Stegeman, A., Elbers, A., Smak, J., & DeJong, M. (1999). Quantification of the transmission of Classical Swine Fever Virus between farms during the 1997–1998 epidemic in The Netherlands. Prev. Vet. Med., 42, 219–234.
dspace.entity.typePublication
relation.isAuthorOfPublication6d5e1204-9b8a-40f4-b149-02d32e0bbed2
relation.isAuthorOfPublicationb078d9ce-ccce-49e2-a4e9-0ce85eca877e
relation.isAuthorOfPublication581c3cdf-f1ce-41e0-ac1e-c32b110407b1
relation.isAuthorOfPublication.latestForDiscoveryb078d9ce-ccce-49e2-a4e9-0ce85eca877e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ivorra15.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format

Collections