Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Insulator-to-metal transition in vanadium supersaturated silicon: variable-range hopping and Kondo effect signatures

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGarcía Hemme, Eric
dc.contributor.authorMontero Álvarez, Daniel
dc.contributor.authorGarcía Hernansanz, Rodrigo
dc.contributor.authorOlea Ariza, Javier
dc.contributor.authorGonzález Díaz, Germán
dc.date.accessioned2023-06-18T06:58:14Z
dc.date.available2023-06-18T06:58:14Z
dc.date.issued2016-07-13
dc.description© 2016 IOP Publishing Ltd. Authors would like to acknowledge the CAI de Técnicas Físicas of the Universidad Complutense de Madrid for the ion implantation procees and metallic evaporations. This work was partially supported by the Project MADRID-PV (Grant No. 2013/MAE-2780) funded by the Comunidad de Madrid, by the Spanish MINECO (Economic and Competitiviness Ministery) under grant TEC 2013-41730-R and by the Universidad Complutense de Madrid (Programa de Financiación de Grupos de Investigación UCM-Banco Santander) under grant 910173-2014. D Montero acknowledge the Spanish MINECO (Economic and Competitiviness Ministery) for financial support under contract BES-2014-067585.
dc.description.abstractWe report the observation of the insulator-to-metal transition in crystalline silicon samples supersaturated with vanadium. Ion implantation followed by pulsed laser melting and rapid resolidification produce high quality single-crystalline silicon samples with vanadium concentrations that exceed equilibrium values in more than 5 orders of magnitude. Temperature-dependent analysis of the conductivity and Hall mobility values for temperatures from 10K to 300K indicate that a transition from an insulating to a metallic phase is obtained at a vanadium concentration between 1.1 × 10^(20) and 1.3 × 10^(21) cm^(−3) . Samples in the insulating phase present a variable-range hopping transport mechanism with a Coulomb gap at the Fermi energy level. Electron wave function localization length increases from 61 to 82 nm as the vanadium concentration increases in the films, supporting the theory of impurity band merging from delocalization of levels states. On the metallic phase, electronic transport present a dispersion mechanism related with the Kondo effect, suggesting the presence of local magnetic moments in the vanadium supersaturated silicon material.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipUniversidad Complutense de Madrid (Programa de Financiación de Grupos de Investigación UCM-Banco Santander)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/39942
dc.identifier.doi10.1088/0022-3727/49/27/275103
dc.identifier.issn0022-3727
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0022-3727/49/27/275103
dc.identifier.relatedurlhttp://iopscience.iop.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24695
dc.issue.number27
dc.journal.titleJournal of physics D: applied physics
dc.language.isoeng
dc.publisherIOP Publishing Ltd
dc.relation.projectIDTEC 2013-41730-R
dc.relation.projectIDBES-2014-067585
dc.relation.projectIDMADRID-PV (2013/MAE-2780)
dc.relation.projectID910173-2014
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordInsulator-to-metal transition
dc.subject.keywordIon implantation
dc.subject.keywordKondo effect
dc.subject.keywordVariable range
dc.subject.keywordHopping
dc.subject.keywordPulsed laser annealing.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleInsulator-to-metal transition in vanadium supersaturated silicon: variable-range hopping and Kondo effect signatures
dc.typejournal article
dc.volume.number49
dcterms.references[1] Zheng, H., Wagner, L. K., 2015, Phys. Rev. Lett., 114, 176401. [2] Brzezicki, W., Noce, C., Romano, A., Cuoco, M., 2015, Phys. Rev. Lett., 114, 247002. [3] Fuhr, J. D., Avignon, M., Alascio, B., 2008, Phys. Rev. Lett., 100, 216402. [4] Shlimak, I., Kaveh, M., 1998, Phys. Rev. B, 58, 15333. [5] Hammer, D., Wu, J., Leighton, C., 2004, Phys. Rev. B, 69, 134407. [6] Seo, Y,, Qin, Y., Vicente, C. L., Choi, K. S., Yoon, J., 2006, Phys. Rev. Lett., 97, 057005. [7] Edwards, P. P., Sienko, M. J., 1978, Phys. Rev. B, 17, 2575. [8] Neamen, D. A., 1997, Semiconductor Physics and Devices, (Irwin). [9] Rosenbaum, T. F., Milligan, R. F., Paalanen, M. A., Thomas, G. A., Bhatt, R. N., Lin, W., 1983, Phys. Rev. B, 27, 7509. [10] Luque, A., Martí, A., Antolín, E., Tablero, C., 2006, Phys. B: Condens. Matter, 382, 320. [11] Pastor, D., Olea, J., del Prado, A., García-Hemme, E., García Hernánsanz, R., González-Díaz, G., 2012, Sol. Energy Mater. Sol. Cells, 104, 159. [12] Winkler, M. T., Recht, D., Sher, M-J., Said, A. J., Mazur, E., Aziz, M. J., 2011, Phys. Rev. Lett., 106, 178701. [13] Olea, J., Toledano-Luque, M., Pastor, D., González-Díaz, G., Mártil, I., 2008, J. Appl. Phys., 104. [14] Tabbal, M., Kim, T., Woolf, D. N., Shin, B., Aziz, M. J., 2010, Appl. Phys. A, 98, 589. [15] García-Hemme, E., García-Hernánsanz, R., Olea, J., Pastor, D., del Prado, A., Mártil, I., González-Díaz, G., 2014, Appl. Phys. Lett., 104, 211105. [16] García-Hemme, E., García-Hernánsanz, R., Olea, J., Pastor, D., del Prado, A., Mártil, I., González-Díaz, G., 2013, Appl. Phys. Lett., 103, 032101. [17] Luque, A., Martí, A., 1997, Phys. Rev. Lett., 78, 5014. [18] Luque, A., Martí, A., Stanley, C., 2012, Nat. Photon., 6, 146. [19] Pastor, D., Olea, J., del Prado, A., García-Hemme, E., García-Hernánsanz, R., Mártil, I., González-Díaz, G., 2013, J. Phys. D: Appl. Phys., 46. [20] Olea, J., Pastor, D., Toledano-Luque, M., Mártil, I., González-Díaz, G., 2011, J. Appl. Phys., 110, 064501. [21] Narayan, J., White, C. W., Aziz, M. J., Stritzker, B., Walthuis, A., 1985, J. Appl. Phys., 57, 564. [22] Tsouroutas, P., Tsoukalas, D., Zergioti, I., Cherkashin, N., Claverie, A., 2009, J. Appl. Phys., 105, 094910. [23] Pastor, D., Olea, J., Muñoz-Martín, A., Climent-Font, A., Mártil, I., González-Díaz, G., 2012, J. Appl. Phys., 112, 113514. [24] Sriranganathan, R., Wollkind, D. J., Oulton, D. B., 1983, J. Cryst. Growth, 62, 265. [25] Cullis, A. G., Hurle, D. T. J., Webber, H. C., Chew, N. G., Poate, J. M., Baeri, P., Foti, G., 1981, Appl. Phys. Lett., 38, 642. [26] Akey, A. J., Recht, D., Williams, J. S., Aziz, M. J., Buonassisi, T., 2015, Adv. Funct. Mater., 25, 4642. [27] Pastor, D., Olea, J., del Prado, A., García-Hemme, E., Mártil, I., González-Díaz, G., Ibáñez, J., Cusco, R., Artús, L., 2011, Semicond. Sci. Technol., 26. [28] Luque, A., Martí, A., 2011, Nat. Photon., 5, 137. [29] Dai, P. H., Zhang, Y. Z., Sarachik, M. P., 1992, Phys. Rev. B, 45, 3984. [30] Castner, T. G., 1991, Hopping Transport in Solids (Amsterdam: Elsevier). [31] Zabrodskii, A. G., Zinoveva, K. N., 1983, J. Exp. Theor. Phys. Lett., 37, 436. [32] Lee, P. A., Ramakrishnan, T. V., 1985, Rev. Mod. Phys., 57, 287. [33] Altshuler, B. L., Aronov, A. G., 1979, J. Exp. Theor. Phys. Lett., 30, 482. [34] Efros, A. L., Shklovskii, B. I., 1975, J. Phys. C: Solid State Phys., 8, L49. [35] Mott, N. F., 1968, Rev. Mod. Phys., 40, 677. [36] Ishida, S., Takaoka, S., Murase, K., Shirai, S., Serikawa, T., 1994, J. Phys. Soc. Japan, 63, 1254. [37] Hewson, A. C., 1993, The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press). [38] Feng, X. G., Popovic, D., Washburn, S., Dobrosavljevic, V., 2001, Phys. Rev. Lett., 86, 2625. [39] Kondo, J., 1964, Prog. Theor. Phys., 32, 37.
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublication765f38c4-71cb-441b-b2a8-d88c5cdcf086
relation.isAuthorOfPublication1c0ebe96-b6cf-43ed-b521-544593e33095
relation.isAuthorOfPublication838d6660-e248-42ad-b8b2-0599f3a4542b
relation.isAuthorOfPublication12efa09d-69f7-43d4-8a66-75d05b8fe161
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication.latestForDiscovery1c0ebe96-b6cf-43ed-b521-544593e33095

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
González-Díez 05 postp+EMB13_07_17.pdf
Size:
1.53 MB
Format:
Adobe Portable Document Format

Collections