Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Sufficient and necessary initial mass conditions for the existence of a waiting time in nonlinear-convection processes

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorÁlvarez, Luis
dc.date.accessioned2023-06-20T16:57:29Z
dc.date.available2023-06-20T16:57:29Z
dc.date.issued1991-03-01
dc.description.abstractWe study the initial behavior of the fronts (for interfaces) generated by the solutions of the equation ut=(um)xx+b(uλ)x, where m,b,λ>0 are real numbers. We derive a mass comparison principle that allows us to give necessary and sufficient conditions in order to have waiting time at the fronts. Different regions in the (λ,m) parameter space must be introduced, leading to answers of a very different nature
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16281
dc.identifier.doi10.1016/0022-247X(91)90008-N
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/0022247X9190008N
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57512
dc.issue.number2
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final392
dc.page.initial378
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu517.95
dc.subject.keyworddiffusion-convection equation
dc.subject.keywordmass comparison principle
dc.subject.keywordwaiting times
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleSufficient and necessary initial mass conditions for the existence of a waiting time in nonlinear-convection processes
dc.typejournal article
dc.volume.number155
dcterms.referencesL. ALVAREZ. J. I. DIAZ. AND R. KERSNER. On the initial growth of the interfaces in nonlinear diffusion-convection processes, in "Nonlinear Diffusion Equations and Their Equilibrium States I” (Ni. Peletier. and Serrin. Eds.). pp. 1-20. Springer-Verlag, NewYork/Berlin. 1987. J. BEAR. "Dynamics of Fluids in Porous Media." American Elsevier, New York, 1972. J. BUCKMASTER. Viscous sheets advancing over dry bed, J. Fluid. Mech. 81 (1977.735-756. S. CHANDRASEKHAR Stochastic problems in physics and astronomy, Rev. Modern Phys. 15(1943), 1-8R9. J.I. DIAZ. AND R. KERSNER, On a nonlincar degenerate parabolic equation in infiltration or evaparatian, J. Differntial Equations 69 (1987). 368-403. J.I. DIAZ AND R. KERSNER. Non existence d’une des frontieres libres dans une equation dégénérée en theorie de la filtration. C. R. Acad. Sci. Patis 296 (1983), 505-508. J. I. DIAZ AND R. KERSNER. On the behavior and cases of nonexistence of the free boundary in a semibounded porous medium, .J. Math. Anal. Appl. 132 (1988),281-289. A. FRIEDMAN, "Partial Differential Equations of the Parabolic Type," Prentice-HalL Englewood Cliffs, NJ, 1969. B. H. GILDING, Properties of solutions of an equation in the theory of infiltration, Arch.Rational Mech. Anal. 65 (1977),203-225. B.H. GILDING, "The Occurrence of Interfaces in Nonlinear Diffusion-Advection Processes," Memorandum 595, Department of Applied Mathematics, Twente University of Technology, 1986. B. H. GILDING, "Improved Theory for a Nonlinear Degenerate Parabolic Equation,"Memorandum 587, Department of Applied Mathemalies, Twente University of Technology, 1986. B. F. KNERR, The porous medium equation in one dimension, Trans. Amer. Math. Soc.234 (1977), 381-415. O. LADYZHENSKAYA, V. SOLONNIKOV, AND URAL'CEVA, "Linear and Quasilinear Equationsof Parabolic Type," translation of Math. Monograph, Vol. 23, Amer. Math. Soc.,Providenee, RI, 1968, O. OLEINIK, A, KALASHNIKOV, ANO YUI-LIN, The Cauchy problem and boundary valueproblems for equations of the type of nonstationary filtration, Izv. Akad. Nauk. SSSR. Ser.Mat. 22 (1958), 667-704. P. ROSENAU AND S. KAMIN, Thermal waves in an absorbing and convective medium,Physica D 8 (1963), 273-283. J. L. VÁZQUEZ, The interface of one-dimensional flows in porous media, Trans. Amer.Math. Soc. 286 (1984), 787-802. J. L. VÁZQUEZ, Asymptotic behaviour and propagation properties of the one-dimensional flow of gas in porous medium, Trans. Amer. Math. Soc. 277 (1983), 507-527.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
118.pdf
Size:
348.51 KB
Format:
Adobe Portable Document Format

Collections