Functional analysis in asymmetric structures
Loading...
Download
Official URL
Full text at PDC
Publication date
2024
Defense date
21/07/2023
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Complutense de Madrid
Citation
Abstract
Esta tesis, titulada “Análisis funcional en estructuras asimétricas”, consiste en el estudio de distintos tipos de estructuras de naturaleza asimétrica, ya sea en relación a una estructura métrica, algebraica, diferencial, o a una combinación de ellas, teniendo las asimetrías métricas un rol protagónico. Algunos ejemplos de estas estructuras incluyen a los espacios normados asimétricos, en los cuales un espacio vectorial real E es dotado de una función p que satisface todas salvo una de las condiciones necesarias para ser una norma, lo cual permite que los valores de p(v) y p(−v) puedan diferir para algunos puntos v ∈ E. Esta noción puede generalizarse aún más relajando la estructura algebraica del espacio vectorial, reemplazando el grupo aditivo por un monoide (el cual puede no poseer inversos aditivos), y restringiendo el producto por escalar a los escalares no-negativos...
This thesis, entitled “Functional analysis in asymmetric structures”, consists of the study of different types of structures of asymmetric nature, related to metric, algebraic and differential structures, as well as combinations of them, with metric asymmetries playing a central role. Some examples of these structures include asymmetric normed spaces, where a real linearspace E is endowed with a function p satisfying all but one of the conditions required to bea norm, which allows for the values of p(v) and p(−v) to differ for some points v ∈ E. This notion can be generalized further by relaxing the algebraic structure of the linear space, by replacing the additive group with a monoid (which may lack additive inverses), and restricting scalar multiplication to non negative scalars...
This thesis, entitled “Functional analysis in asymmetric structures”, consists of the study of different types of structures of asymmetric nature, related to metric, algebraic and differential structures, as well as combinations of them, with metric asymmetries playing a central role. Some examples of these structures include asymmetric normed spaces, where a real linearspace E is endowed with a function p satisfying all but one of the conditions required to bea norm, which allows for the values of p(v) and p(−v) to differ for some points v ∈ E. This notion can be generalized further by relaxing the algebraic structure of the linear space, by replacing the additive group with a monoid (which may lack additive inverses), and restricting scalar multiplication to non negative scalars...
Description
Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, leída el 21-07-2023