Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

dc.contributor.authorAranda, V. M.
dc.contributor.authorArqueros Martínez, Fernando
dc.contributor.authorGarcía Pinto, Diego
dc.contributor.authorMinaya Flores, Ignacio Andrés
dc.contributor.authorRosado Vélez, Jaime
dc.contributor.authorVázquez Peñas, José Ramón
dc.date.accessioned2023-06-18T06:46:43Z
dc.date.available2023-06-18T06:46:43Z
dc.date.issued2015-06-20
dc.descriptionAutoría conjunta: Pierre Auger Collaboration. Artículo firmado por mas de 400 autores. The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Sao Paulo Research Foundation (FAPESP) Grants # 2010/07359-6, # 1999/05404-3, Ministerio de Ciencia e Tecnologia (MCT), Brazil; MSMT-CR LG13007, 7AMB14AR005, CZ.1.05/2.1.00/03.0058 and the Czech Science Foundation grant 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), Institut Lagrange de Paris, ILP LABEX ANR-10-LABX-63, within the Investissements d'Avenir Programme ANR-11-IDEX-0004-02, France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grant Nos.ERA-NET-ASPERA/01/11 and ERA-NET-ASPERA/02/11, National Science Centre, Grant Nos. 2013/08/M/ST9/00322, 2013/08/M/ST9/00728 and HARMONIA 5 - 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects nr. 20/2012 and nr. 194/2012, project nr. 1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, and PN-II-RU-PD-2011-3-0062, the Minister of National Education, Programme for research - Space Technology and Advanced Research - STAR, project number 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educacion y Ciencia, Xunta de Galicia, European Community 7th Framework Program, Grant No. FP7-PEOPLE-2012-IEF-328826, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract No. DE-AC02-07CH11359, DE-FR02-04ER41300, DE-FG02-99ER41107 and DE-SC0011689, National Science Foundation, Grant No. 0450696, The Grainger Foundation, USA; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO.
dc.description.abstractEnergy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E >= 6 x 10(19) eV by analyzing cosmic rays with energies above E >= 5 x 10(18) eV arriving within an angular separation of approximately 15 degrees. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipMSMT-CR, Czech Republic
dc.description.sponsorshipCzech Science Foundation, Czech Republic
dc.description.sponsorshipCentre de Calcul IN2P3/CNRS, France
dc.description.sponsorshipCentre National de la Recherche Scientifique (CNRS), France
dc.description.sponsorshipConseil Regional Ile-de-France, France
dc.description.sponsorshipDepartement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), France
dc.description.sponsorshipDepartement Sciences de l'Univers (SDU-INSU/CNRS), France
dc.description.sponsorshipInstitut Lagrange de Paris, France
dc.description.sponsorshipILP LABEX within the Investissements d'Avenir Programme, France
dc.description.sponsorshipBundesministerium fur Bildung und Forschung (BMBF), Germany
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG), Germany
dc.description.sponsorshipFinanzministerium Baden-Wurttemberg, Germany
dc.description.sponsorshipHelmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Germany
dc.description.sponsorshipMinisterium fur Wissenschaft und Forschung Nordrhein Westfalen, Germany
dc.description.sponsorshipMinisterium fur Wissenschaft, Forschung und Kunst Baden-Wurttemberg, Germany.
dc.description.sponsorshipIstituto Nazionale di Fisica Nucleare (INFN), Italy
dc.description.sponsorshipMinistero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy
dc.description.sponsorshipGran Sasso Center for Astroparticle Physics (CFA), Italy
dc.description.sponsorshipCETEMPS Center of Excellence, Italy
dc.description.sponsorshipMinisterie van Onderwijs, Cultuur en Wetenschap, Netherlands
dc.description.sponsorshipNederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands
dc.description.sponsorshipStichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands
dc.description.sponsorshipNational Centre for Research and Development, Poland
dc.description.sponsorshipNational Science Centre, Poland
dc.description.sponsorshipPortuguese national funds, Portugal
dc.description.sponsorshipFEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal
dc.description.sponsorshipRomanian Authority for Scientific Research ANCS, Romania
dc.description.sponsorshipCNDI-UEFISCDI, Romania
dc.description.sponsorshipMinister of National Education, Programme for research - Space Technology and Advanced Research - STAR, Romania
dc.description.sponsorshipSlovenian Research Agency, Slovenia
dc.description.sponsorshipComunidad de Madrid, Spain
dc.description.sponsorshipFEDER, Spain
dc.description.sponsorshipMinisterio de Educacion y Ciencia, Spain
dc.description.sponsorshipXunta de Galicia, Spain
dc.description.sponsorshipScience and Technology Facilities Council, United Kingdom
dc.description.sponsorshipMarie Curie-IRSES/EPLANET
dc.description.sponsorshipEuropean Particle Physics Latin American Network
dc.description.sponsorshipEuropean Union 7th Framework Program
dc.description.sponsorshipUNESCO
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33096
dc.identifier.citation1. K.Kotera,A.V.Olinto,The astrophysics of ultrahigh energy cosmic rays. Annu. Rev. Astron. Astrophys. 49, 119–153 (2011) 2. D. Ryu et al., Magnetic fields in the large-scale structure of the universe. Space Sci. Rev. 166, 1–35 (2012) 3. L.Widrow et al., The first magnetic fields. Space Sci. Rev. 166(1), 37–70 (2012) 4. S. Lee, A.V. Olinto, G. Sigl, Extragalactic magnetic field and the highest energy cosmic rays. Astrophys. J. 455, L21–L24 (1995) 5. M. Lemoine et al.,Ultra-high-energy cosmic-ray sources and largescale magnetic fields. Astrophys. J. 486.2, L115–L118 (1997) 6. J. Abraham et al., Properties and performance of the prototype instrument for the Pierre Auger Observatory. Nucl. Instrum. Methods Phys. Res. Sect. A 523, 50 (2004) 7. J. Abraham et al., Trigger and aperture of the surface detector array of the Pierre Auger Observatory. Nucl. Instrum. Methods Phys. Res. Sect. A A613, 29–39 (2010) 8. J. Abraham et al., Correlation of the highest energy cosmic rays with nearby extragalactic objects. Science 318, 938–943 (2007) 9. J. Abraham et al., Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei. Astropart. Phys. 29, 188–204 (2008) 10. P. Abreu et al., Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter. Astropart. Phys. 34, 314–326 (2010) 11. P. Abreu et al., A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 4, 040 (2012) 12. P. Abreu et al., Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 1305, 009 (2013) 13. P. Abreu et al., Search for signatures ofmagneticallyinduced alignment in the arrival directions measured by the Pierre Auger Observatory. Astropart. Phys. 35, 354–361 (2012) 14. C.L. Basham et al., Energy correlations in electron–positron annihilation: testing quantum chromodynamics. Phys. Rev. Lett. 41(23), 1585–1588 (1978) 15. S. Brandt et al., The principal axis of jets—an attempt to analyse high-energy collisions as two-body processes. Phys. Lett. 12, 57–61 (1964) 16. M. Erdmann, P. Schiffer, A method of measuring cosmic magnetic fields with ultra high energy cosmic ray data. Astropart. Phys. 33, 201–205 (2010) 17. M. Erdmann, T. Winchen, Detecting local deflection patterns of ultra-high energy cosmic rays using the principal axes of the directional energy distribution. in Proceedings of the 33rd ICRC (Rio de Janeiro, Brasil, 2013) 18. K. Greisen, End to the cosmic-ray spectrum? Phys. Rev. Lett. 16, 748–750 (1966) 19. G.T. Zatsepin, V. Kuz’min, Upper limit on the spectrum of cosmic rays. Sov. Phys. JETP Lett. 4, 78–80 (1966) 20. H.-P. Bretz et al., PARSEC: a parametrized simulation engine for ultra-high energy cosmic ray protons.Astropart. Phys. 54, 110–117(2014) 21. P. Schiffer, Constraining cosmic magnetic fields by a measurement of energy-energy-correlations with the Pierre Auger Observatory. Ph.D. thesis, RWTH Aachen University (2011) 22. T. Winchen, The principal axes of the directional energy distributionof cosmic rays measured with the Pierre Auger Observatory. Ph.D. thesis, RWTH Aachen University (2013) 23. P. Sommers, Cosmic ray anisotropy analysis with a full-sky observatory. Astropart. Phys. 14, 271–286 (2001) 24. E. Farhi, Quantum chromodynamics test for jets. Phys. Rev. Lett. 39(25), 1587–1588 (1977) 25. R. Fisher, Dispersion on a sphere. Proc. R. Soc. A 217, 295–305 (1953) 26. A. Achterberg et al., Intergalactic propagation ofUHEcosmic rays. in 19th Texas Symposium on Relativistic Astrophysics and Cosmology, (Paris, France, 1998) 27. D. Harari et al., Lensing of ultra-high energy cosmic rays in turbulent magnetic fields. J. High Energy Phys. 0203, 045 (2002) 28. J. Abraham et al., Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory. Physics Lett. B 685(1018), 239–246 (2010) 29. K.V. Mardia, Statistics of Directional Data (Academic Press, London, 1972) 30. S.R. Jammalamadaka, A. SenGupta, Topics in Circular Statistics. Series on multivariate analysis, vol. 5 (World Scientific, Singapore, 2001) 31. C. Di Giulio, Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory. in Proceedings of the 31st ICRC (Łódz, 2009) 32. C. Bonifazi, A. Letessier-Selvon, E. Santos, A model for the time uncertainty measurements in the Auger surface detector array. Astropart. Phys. 28, 523–528 (2008) 33. M.S. Sutherland, B.M. Baughman, J.J. Beatty, CRT: a numerical tool for propagating ultra-high energy cosmic rays through Galactic magnetic field models. Astropart. Phys. 34, 198–204 (2010) 34. R. Jansson, G.R. Farrar, A new model of the Galactic magnetic field. Astrophys. J. 757, 14 (2012) 35. R. Jansson, G.R. Farrar, The Galactic magnetic field. Astrophys. J. 761(1), L11 (2012) 36. K.M. Górski et al., HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 622, 759–771 (2005) 37. S. Chandrasekhar, Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15(1), 1–89 (1943) 38. A. L. Read, Modified frequentist analysis of search results (the CLs method). in 1st Workshop on Confidence Limits (CERN. Geneva, Switzerland, 2000), pp. 81–101 39. A.L. Read, Presentation of search results: the CLs technique. J. Phys. G 28(10), 2693–2704 (2002)
dc.identifier.doi10.1140/epjc/s10052-015-3471-0
dc.identifier.issn1434-6044
dc.identifier.officialurlhttp://dx.doi.org/10.1140/epjc/s10052-015-3471-0
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24146
dc.issue.number6
dc.journal.titleEuropean physical journal C
dc.language.isoeng
dc.publisherSpringer
dc.relation.projectIDFP7-PEOPLE-2012-IEF (328826)
dc.relation.projectIDEPLANET (246806)
dc.relation.projectIDLG13007
dc.relation.projectID14-17501S
dc.relation.projectIDANR-10-LABX-63
dc.relation.projectIDANR-11-IDEX-0004-02
dc.relation.projectIDERA-NET-ASPERA/01/11
dc.relation.projectIDERA-NET-ASPERA/02/11
dc.relation.projectID2013/08/M/ST9/00322
dc.relation.projectID2013/08/M/ST9/00728
dc.relation.projectIDHARMONIA 5 - 2013/10/M/ST9/00062
dc.relation.projectID83/2013
dc.relation.projectID7AMB14AR005
dc.relation.projectIDCZ.1.05/2.1.00/03.0058
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu539.1
dc.subject.keywordGalactic magnetic-field
dc.subject.keywordSurface detector array
dc.subject.keywordQuantum chromodynamics
dc.subject.keywordSpectrum
dc.subject.keywordModel
dc.subject.keywordJets
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleSearch for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory
dc.typejournal article
dc.volume.number75
dspace.entity.typePublication
relation.isAuthorOfPublicatione6fd6d50-2946-45a9-a515-273dddff2091
relation.isAuthorOfPublication7c75d106-b698-42ee-bfea-fe4a2b11b7f8
relation.isAuthorOfPublication32033072-414c-4448-b44b-98a6bd3e9321
relation.isAuthorOfPublication.latestForDiscoverye6fd6d50-2946-45a9-a515-273dddff2091
Download
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
arqueros52libre + CC.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format
Collections