Routh Reduction for Singular Lagrangians

dc.contributor.authorLangerock, Bavo
dc.contributor.authorCastrillón López, Marco
dc.date.accessioned2023-06-20T03:32:53Z
dc.date.available2023-06-20T03:32:53Z
dc.date.issued2010
dc.description.abstractThis paper concerns the Routh reduction procedure for Lagrangians systems with symmetry. It differs from the existing results on geometric Routh reduction in the fact that no regularity conditions on either the Lagrangian L or the momentum map JL are required apart from the momentum being a regular value of JL. The main results of this paper are: the description of a general Routh reduction procedure that preserves the Euler-Lagrange nature of the original system and the presentation of a presymplectic framework for Routh reduced systems. In addition, we provide a detailed description and interpretation of the Euler-Lagrange equa-tions for the reduced system. The proposed procedure includes Lagrangian systems with a non-positively definite kinetic energy metric.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21388
dc.identifier.doi10.1142/S0219887810004907
dc.identifier.issn0219-8878
dc.identifier.officialurlhttp://www.worldscinet.com/ijgmmp/ijgmmp.shtml
dc.identifier.relatedurlhttp://www.worldscientific.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43824
dc.issue.number8
dc.journal.titleInt. J. Geom. Methods Mod. Phys
dc.language.isoeng
dc.page.final1489
dc.page.initial1451
dc.publisherSpringer-Verlag
dc.rights.accessRightsrestricted access
dc.subject.cdu514.85
dc.subject.keywordconstrained Lagrangian systems
dc.subject.keywordmomentum map
dc.subject.keywordreduction
dc.subject.keywordRouthian
dc.subject.keywordsingular Lagrangians
dc.subject.keywordsymmetry
dc.subject.keywordsymplectic form
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleRouth Reduction for Singular Lagrangians
dc.typejournal article
dc.volume.number7
dcterms.referencesV.I. Arnold. Dynamical Systems III, volume Encyclopaedia ofMathematics. Springer-Verlag,1988. H. Cendra, J.E. Marsden, and T.S. Ratiu. Lagrangian Reduction by Stages, volume 152 of Memoirs of the American Mathematical Society. 2001. M.C. Ciocci and B. Langerock. Dynamics of the Tippe Top via Routhian Reduction. Regul. and Chaotic Dyn., 12:602–614, 2007. M. Crampin and T. Mestdag. Routh’s procedure for non-Abelian symmetry groups. J. Math. Phys., 49, 2008. H. Goldstein. Classical Mechanics. Addison-Wesley Series in Physics. Addison-Wesley Publishing Co., Reading Mass., second edition, 1980. M.J. Gotay and J.M. Nester. Presymplectic Lagrangian systems I: the constraint algorithm and the euivalence problem. Ann. Inst. Henri Poincar´e, 30(2):129–142, 1979. M.J. Gotay and J.M. Nester. Presymplectic Lagrangian systems II: the second-order equation problem. Ann. Inst. Henri Poincaré, 32(1):1–13, 1980. M.J. Gotay, J.M. Nester, and G. Hinds. Presymplectic manifold and the Dirac-Bergmann theory of constraints. J. Math. Phys., 19(11):2388–2399, 1978.33 S.M. Jalnapurkar and J.E. Marsden. Reduction of Hamiltons variational principle. Dynam-ics and Stability of Systems, 15(3):287–318, 2000. S. Kobayashi and K. Nomizu. Foundations of differential geometry, volume I and II. Intersience Publishers, 1963. D. Kramer, H. Stephani, E. Herlt, and M. MacCallum. Exact solutions of Einsteins field equations. Number 6 in Cambridge monographs on mathematical physics. Cambridge University Press, 1980. B. Langerock, F. Cantrijn, and J. Vankerschaver. Routhian reduction for quasi-invariant Lagrangians. J. Math. Phys., 51(2), 2010. math.DG/09120863. D. Lewis. Lagrangian block diagonalization. J. Dynamics and diff. Equations, 4(1), 1992. M. Castrillón López and T.S. Ratiu. Reduction in principal bundles: Covariant Lagrange-Poincaré equations. Comm. Math. Phys., 236:223–250, 2003. J.E. Marsden, T.S. Ratiu, and J. Scheurle. Reduction theory and the Lagrange-Routh equations. Journal of Mathematical Physics, 41(6):3379–3429, 2000. Kenneth R. Meyer. Symmetries and integrals in mechanics. In Dynamical systems (Proc.Sympos., Univ. Bahia, Salvador, 1971), pages 259–272. Academic Press, New York, 1973. L.A. Pars. A Treatise on Analytical Dynamics. Heinemann Educational Books, 1965.
dspace.entity.typePublication
relation.isAuthorOfPublication32e59067-ef83-4ca6-8435-cd0721eb706b
relation.isAuthorOfPublication.latestForDiscovery32e59067-ef83-4ca6-8435-cd0721eb706b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
routh-Castrillón.pdf
Size:
394.47 KB
Format:
Adobe Portable Document Format

Collections