Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Cauchy problem for the time-dependent Ginzburg-Landau model of superconductivity

dc.contributor.authorRodríguez Bernal, Aníbal
dc.contributor.authorWang, Bixiang
dc.date.accessioned2023-06-20T17:11:33Z
dc.date.available2023-06-20T17:11:33Z
dc.date.issued2000
dc.description.abstractThe Cauchy problem for the time-dependent Ginzburg-Landau equations of superconductivity in R-d (d = 2, 3) is investigated in this paper. When d = 2, we show that the Cauchy problem for this model is well posed in L-2. When d = 3, we establish the existence result of solutions for L-3 initial data and the uniqueness result for L-4 initial data.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.sponsorshipMinisterio de Educación y cultura
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/19983
dc.identifier.doi10.1017/S0308210500000731
dc.identifier.issn0308-2105
dc.identifier.officialurlhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=1196076
dc.identifier.relatedurlhttp://journals.cambridge.org/action/login
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57919
dc.issue.number6
dc.journal.titleProceedings of the Royal Society of Edinburgh: Section A Mathematics
dc.language.isoeng
dc.page.final1404
dc.page.initial1383
dc.publisherCambridge University Press
dc.relation.projectIDPB96-0648
dc.rights.accessRightsrestricted access
dc.subject.cdu517.986
dc.subject.keywordGinzburg-Landau equations
dc.subject.keywordSuperconductivity
dc.subject.keywordExistence
dc.subject.keywordUniqueness
dc.subject.keywordWeak-kappa-limit
dc.subject.ucmFunciones (Matemáticas)
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleCauchy problem for the time-dependent Ginzburg-Landau model of superconductivity
dc.typejournal article
dc.volume.number130
dcterms.referencesC. Bolley and B. Helffer. Rigorous results for the Ginzburg-Landau equations associated to a superconducting film in the weak κ -limit. Rev. Math. Phys. 8 (1996), 43–83. C. Bolley and B. Helffer. Proof of the De Gennes formula for the superheating field in the weak κ -limit. Ann. Inst. H. Poincaré Analyse Non Linéaire 14 (1997), 597–613. S. J. Chapman, S. D. Howison and J. R. Ockendon. Macroscopic models for superconductivity. SIAM Rev. 34 (1992), 529–560. Z. M. Chen, K. H. Hoffmann and J. Liang. On a non-stationary Ginzburg-Landau superconductivity model. Math. Meth. Appl. Sci. 16 (1993), 855–875. Q. Du. Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity. Appl. Analysis 53 (1994), 1–17. J. Fleckinger-Pellé, H. G. Kaper and P. Takáč. Dynamics of the Ginzburg-Landau equations of superconductivity. Nonlinear Analysis TMA 32 (1998), 647–665. A. Friedman. Partial differential equations (New York: Holt, Reinhart and Winston, 1969). L. Gorkov and G. Eliashberg. Generalization of the Ginzburg-Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities. Soviet Phys. JETP 27 (1968), 328–334. B. Guo and G. Yuan. Cauchy problem for the Ginzburg-Landau equation for the superconductivity model. Proc. R. Soc. Edinb. A 127 (1997), 1181–1192. J. L. Lions, Quelques Methodes de Resolution des Problems Auxlimites Non Lineaires (Paris: Dunod, 1969). Q. Tang. On an evolutionary system of Ginzburg-Landau equations with fixed total magnetic flux. Commun. Partial Diff. Eqns 20 (1995), 1–36. Q. Tang and S. Wang. Time dependent Ginzburg-Landau equations of superconductivity. Physica D 88 (1995), 139–166. R. Temam. Infinite dimensional dynamical systems in mechanics and physics (Springer, 1988). B. Wang. Uniqueness of solutions for the Ginzburg-Landau model of superconductivity in three spatial dimensions. J. Math. Analysis Appl. (In the press.) B. Wang and N. Su. Global weak solutions for the Ginzburg-Landau equations of superconductivity. Appl. Math. Lett. 12 (1999), 115–118. S. Wang and M. Zhan. L p solutions to the time dependent Ginzburg-Landau equations of superconductivity. Indiana University ISCAM No. 9622. Nonlinear Analysis 36 (1999), 661–677. Y. Yang. Existence, regularity and asymptotic behaviour of the solutions to the Ginzburg-Landau equations on R 3 . Commun. Math. Phys. 123 (1989), 147–161. Y. Yang. On the abelian Higgs models with sources. J. Math. Pures Appl. 70 (1991), 325–344. Y. Yang. The existence of Ginzburg-Landau solutions on the plane by a direct variational method. Ann. Inst. H. Poincaré Analyse Non Linéaire 11 (1994), 517–536.
dspace.entity.typePublication
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublication.latestForDiscoveryfb7ac82c-5148-4dd1-b893-d8f8612a1b08

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodBernal46.pdf
Size:
1.13 MB
Format:
Adobe Portable Document Format

Collections