Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Flat blow-up in one-dimensional semilinear heat equations

dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorVelázquez, J.J. L.
dc.date.accessioned2023-06-20T18:49:47Z
dc.date.available2023-06-20T18:49:47Z
dc.date.issued1992
dc.description.abstractConsider the Cauchy problem ut=uxx+up, x∈R, t>0, u(x,0)=u0(x), x∈R, where p>1 and u0(x) is continuous, nonnegative and bounded. Assume that u(x,t) blows up at x=0, t=T and set u(x,t)=(T−t)−1/(p−1)φ(y,τ), y=x/T−t−−−−√, τ=−ln(T−t). Here we show that there exist initial values u0(x) for which the corresponding solution is such that two maxima collapse at x=0, t=T. One then has that φ(y,τ)=(p−1)1/(p−1)−C1e−τH4(y)+o(e−τ)asτ→∞,(1) with C1>0, H4(y)=c4H˜4(y/2), where c4=(23(4π)1/4)−1, H˜4(s) is the standard 4th Hermite polynomial, and convergence in (1) takes place in Ck,αloc for any k≥1 and some α∈(0,1). We also show that in this case, limt↑T(T−t)1/(p−1)u(ξ(T−t)1/4,t)=(p−1)(1+C1c4ξn)−1/(p−1),(2) where the convergence is uniform on sets |ξ|≤R with R>0. This asymptotic behaviour is different (and flatter) than that corresponding to solutions spreading from data u0(x) having a single maximum, in which case (3)φ(y,τ)=(p−1)−1/(p−1)−(4π)1/4(p−1)−1/(p−1)2√p⋅H2(y)τ+o(1τ) as τ→∞, and limt↑T(T−t)1/(p−1)u(ξ(T−t)1/2|ln(T−t)|1/2,t)=(p−1)−1/(p−1)(1+(p−1)4pξ2)−1/(p−1).(4)
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22700
dc.identifier.issn0893-4983
dc.identifier.officialurlhttp://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&page=toc&handle=euclid.die/1370870934
dc.identifier.relatedurlhttp://www.aftabi.com/DIE.html
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58718
dc.issue.number5
dc.journal.titleDifferential and Integral Equations
dc.page.final997
dc.page.initial973
dc.publisherKhayyam Publishing
dc.rights.accessRightsmetadata only access
dc.subject.cdu517.956.4
dc.subject.keywordSemi-linear heat equation
dc.subject.keywordCauchy problem
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleFlat blow-up in one-dimensional semilinear heat equations
dc.typejournal article
dc.volume.number5
dspace.entity.typePublication

Download

Collections