Rapid thermalization of spin chain commuting Hamiltonians
dc.contributor.author | Bardet, Ivan | |
dc.contributor.author | Capel, Angela | |
dc.contributor.author | Gao, Li | |
dc.contributor.author | Lucia, Angelo | |
dc.contributor.author | Pérez García, David | |
dc.contributor.author | Rouzé, Cambyse | |
dc.date.accessioned | 2023-06-22T10:57:17Z | |
dc.date.available | 2023-06-22T10:57:17Z | |
dc.date.issued | 2022 | |
dc.description.abstract | We prove that spin chains weakly coupled to a large heat bath thermalize rapidly at any temperature for finite-range, translation-invariant commuting Hamiltonians, reaching equilibrium in a time which scales logarithmically with the system size. From a physical point of view, our result rigorously establishes the absence of dissipative phase transitions for Davies evolutions over translation-invariant spin chains. The result has also implications in the understanding of Symmetry Protected Topological phases for open quantum systems. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Instituto de Ciencias Matemáticas (ICMAT) | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.sponsorship | Unión Europea. Horizonte 2020 | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (MINECO) | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | ANR (Agence Nationale de la Recherche) | |
dc.description.status | unpub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/74310 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/71934 | |
dc.language.iso | eng | |
dc.relation.projectID | GAPS (648913) | |
dc.relation.projectID | (RYC2019-026475-I / AEI / 10.13039/501100011033) | |
dc.relation.projectID | MTM2017-88385-P | |
dc.relation.projectID | QUITEMAD-CM (P2018/TCS-4342) | |
dc.relation.projectID | ESQuisses (ANR-20-CE47-0014-01) | |
dc.relation.projectID | Fundación BBVA | |
dc.rights | Atribución 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject.cdu | 51-73 | |
dc.subject.cdu | 530.145 | |
dc.subject.cdu | 531.19 | |
dc.subject.keyword | Quantum Physics | |
dc.subject.keyword | Statistical Mechanics | |
dc.subject.keyword | Mathematical Physics | |
dc.subject.ucm | Física matemática | |
dc.title | Rapid thermalization of spin chain commuting Hamiltonians | |
dc.type | journal article | |
dcterms.references | [1] K. Temme, T. J. Osborne, K. G. Vollbrecht, D. Poulin, and F. Verstraete. Quantum metropolis sampling. Na- ture, 471:87–90, 2011. [2] K. Huang. Statistical Mechanics. John Wiley & Sons, 1987. [3] R. D. Somma, S. Boixo, H. Barnum, and K. Emanuel. Quantum simulations of classical annealing processes. Phys. Rev. Lett., 101:130504, 2008. [4] F. G. S. L. Brandão and K. M. Svore. Quantum speedups for solving semidefinite programs. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 415–426. IEEE, 2017. [5] M. Kieferová and N. Wiebe. Tomography and generative training with quantum Boltzmann machines. Phys. Rev. A, 96(6):062327, 2017. [6] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd. Quantum machine learning. Nature, 549:195–202, 2017. [7] T. S. Cubitt, A. Lucia, S. Michalakis, and D. Pérez- García. Stability of local quantum dissipative systems. Commun. Math. Phys., 337:1275–1315, 2015. [8] A. Lucia, T. S. Cubitt, S. Michalakis, and D. Pérez- García. Rapid mixing and stability of quantum dissipative systems. Phys. Rev. A, 91(4), April 2015. [9] R. J. Glauber. Time-dependent statistics of the Ising model. J. Math. Phys., 4(2):294–307, 1963. [10] R. A. Holley and D.W. Stroock. Uniform and L2 convergence in one dimensional stochastic Ising models. Com- mun. Math. Phys., 123(1):85–93, 1989. [11] R. Holley. Rapid convergence to equilibrium in one dimensional stochastic Ising models. Ann. Prob., pages 72–89, 1985. [12] B. Zegarlinski. Log-Sobolev inequalities for infinite onedimensional lattice systems. Commun. Math. Phys, 133 (1):147–162, 1990. [13] M. J. Kastoryano and F. G. S. L. Brandao. Quantum Gibbs samplers: The commuting case. Commun. Math. Phys., 344(3):915–957, 2016. [14] R. Alicki, M. Fannes, and M. Horodecki. On thermalization in Kitaev’s 2D model. J. Phys. A: Math. Theor., 42 (6):065303, 2009. [15] A. Kómár, O. Landon-Cardinal, and K. Temme. Necessity of an energy barrier for self-correction of abelian quantum doubles. Phys. Rev. A, 93(5):052337, 2016. [16] A. Lucia, D. Pérez-García, and A. Pérez-Hernández. Thermalization in Kitaev’s quantum double models via Tensor Network techniques. arXiv preprint arXiv:2107.01628, 2021. [17] L. Gross. Hypercontractivity and logarithmic sobolev inequalities for the clifford-dirichlet form. Duke Math. J., 42(3), September 1975. [18] M. J. Kastoryano and K. Temme. Quantum logarithmic Sobolev inequalities and rapid mixing. J. Math. Phys., 54(5):052202, May 2013. [19] K. Temme, F. Pastawski, and M. J. Kastoryano. Hypercontractivity of quasi-free quantum semigroups. J. Phys. A: Math. Theor., 47(40):405303, September 2014. [20] I. Bardet, Á. Capel, A. Lucia, D. Pérez-García, and C. Rouzé. On the modified logarithmic Sobolev inequality for the heat-bath dynamics for 1D systems. J. Math. Phys., 62(6):061901, 2021. [21] Á Capel, C. Rouzé, and D. Stilck França. The modified logarithmic Sobolev inequality for quantum spin systems: classical and commuting nearest neighbour interactions. arXiv preprint, arXiv:2009.11817, 2020. [22] Á. Capel, A. Lucia, and D. Pérez-García. Quantum conditional relative entropy and quasi-factorization of the relative entropy. J. Phys. A: Math. Theor., 51(48): 484001, 2018. [23] S. Beigi, N. Datta, and C. Rouzé. Quantum reverse hypercontractivity: Its tensorization and application to strong converses. Commun. Math. Phys., 376(2):753–794, May 2020. [24] P. Werner, K. Völker, M. Troyer, and S. Chakravarty. Phase Diagram and Critical Exponents of a Dissipative Ising Spin Chain in a Transverse Magnetic Field. Phys. Rev. Lett., 94:047201, 2005. [25] L. Capriotti, A. Cuccoli, A. Fubini, V. Tognetti, and R. Vaia. Dissipation-Driven Phase Transition in Two- Dimensional Josephson Arrays. Phys. Rev. Lett., 94: 157001, 2005. [26] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller. Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys., 4:878– 883, 2008. [27] S. Morrison and A. S. Parkins. Dissipation-driven quantum phase transitions in collective spin systems. J. Phys. B: At. Mol. Opt. Phys., 41:195502, 2008. [28] E.M. Kessler, G. Giedke, A. Imamoglu, S. F. Yelin, M. D. Lukin, and J. I. Cirac. Dissipative phase transitions in a central spin system. Phys. Rev. A, 86:012116, 2012. [29] B. Horstmann, J. I. Cirac, and G. Giedke. Noise-driven dynamics and phase transitions in fermionic systems. Phys. Rev. A, 87:012108, 2013. [30] F. Verstraete, M. M. Wolf, and J. I. Cirac. Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys., 5:633–636, 2009. [31] X.-G. Wen. Quantum orders and symmetric spin liquids. Phys. Rev. B, 65(16):165113, 2002. [32] Z.-C. Gu and X.-G. Wen. Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order. Phys. Rev. B, 80(15):155131, 2009. [33] X. Chen, Z.-C. Gu, and X.-G. Wen. Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B, 83(3):035107, 2011. [34] S. Diehl, E. Rico, M. A. Baranov, and P. Zoller. Topology by dissipation in atomic quantum wires. Nat. Phys., 7 (12):971–977, October 2011. [35] D. Rainis and D. Loss. Majorana qubit decoherence by quasiparticle poisoning. Phys. Rev. B, 85(17):174533, 2012. [36] O. Viyuela, A. Rivas, and M. A. Martín-Delgado. Thermal instability of protected end states in a onedimensional topological insulator. Phys. Rev. B, 86(15), October 2012. [37] C.-E. Bardyn, M. A. Baranov, C. V. Kraus, E. Rico, A. İmamoğlu, P. Zoller, and S. Diehl. Topology by dissipation. New J. Phys., 15(8):085001, August 2013. [38] O. Viyuela, A. Rivas, and M. A. Martín-Delgado. Symmetry-protected topological phases at finite temperature. 2D Mater., 2(3):034006, 2015. [39] S. Roberts, B. Yoshida, A. Kubica, and S. D. Bartlett. Symmetry-protected topological order at nonzero temperature. Phys. Rev. A, 96(2), August 2017. [40] M. McGinley and N. R. Cooper. Interacting symmetryprotected topological phases out of equilibrium. Phys. Rev. Res., 1(3):033204, 2019. [41] A. Coser and D. Pérez-García. Classification of phases for mixed states via fast dissipative evolution. Quantum, 3:174, 2019. [42] M. McGinley and N. R. Cooper. Fragility of time-reversal symmetry protected topological phases. Nat. Phys., 16 (12):1181–1183, 2020. [43] C. de Groot, A. Turzillo, and N. Schuch. Symmetry protected topological order in open quantum systems. arXiv preprint, arXiv:2112.04483, 2021. [44] A. Altland, M. Fleischhauer, and S. Diehl. Symmetry Classes of Open Fermionic Quantum Matter. Phys. Rev. X, 11(2), May 2021. [45] O. Viyuela, A. Rivas, S. Gasparinetti, A. Wallraff, S. Filipp, and M. A. Martín-Delgado. Observation of topological uhlmann phases with superconducting qubits. NPJ Quantum Inf., 4(1):1–6, 2018. [46] H. J. Briegel and R. Raussendorf. Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett., 86(5):910–913, January 2001. [47] R. Raussendorf and H. J. Briegel. A One-Way Quantum Computer. Phys. Rev. Lett., 86(22):5188–5191, May 2001. [48] R. Raussendorf and H. J. Briegel. Computational model underlying the one-way quantum computer. Quantum Inf. Comput., 2(6):443–486, October 2002. [49] W. Son, L. Amico, R. Fazio, A. Hamma, S. Pascazio, and V. Vedral. Quantum phase transition between cluster and antiferromagnetic states. EPL (Europhysics Letters), 95 (5):50001, August 2011. [50] B. Buča and T. Prosen. A note on symmetry reductions of the lindblad equation: transport in constrained open spin chains. New J. Phys., 14(7):073007, 2012. [51] V. V. Albert and L. Jiang. Symmetries and conserved quantities in Lindblad master equations. Phys. Rev. A, 89(2), February 2014. [52] C. Palazuelos and T. Vidick. Survey on nonlocal games and operator space theory. J. Math. Phys., 57:015220, 2016. [53] E. B. Davies. Markovian master equations. Commun. Math. Phys., 39(2):91–110, June 1974. [54] I. Bardet, Á. Capel, L. Gao, A. Lucia, D. Pérez-García, and C. Rouzé. Entropy decay for Davies semigroups of 1D quantum spin chains. arXiv preprint, arXiv:2112.00601, 2021. [55] M. M. Wolf. Quantum channels & operations: Guided tour. Lecture notes available at http://www-m5. ma. tum. de/foswiki/pub M, 5, 2012. [56] H. Araki. Gibbs states of a one dimensional quantum lattice. Commun. Math. Phys., 14(2):120–157, 1969. [57] A. Bluhm, Á. Capel, and A. Pérez-Hernández. Exponential decay of mutual information for Gibbs states of local hamiltonians. arXiv preprint, arXiv:2104.04419, 2021. [58] L. Gao and C. Rouzé. Complete entropic inequalities for quantum Markov chains. arXiv preprint arXiv:2102.04146, 2021. [59] S. Bravyi, M. B. Hastings, and S. Michalakis. Topological quantum order: stability under local perturbations. J. Math. Phys., 51(9):093512, 2010. [60] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa. Entanglement spectrum of a topological phase in one dimension. Phys. Rev. B, 81(6):064439, 2010. [61] J. Haegeman, D. Pérez-García, I. Cirac, and N. Schuch. Order parameter for symmetry-protected phases in one dimension. Phys. Rev. Lett., 109(5):050402, 2012. [62] N. Schuch, D. Pérez-García, and I. Cirac. Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B, 84(16), October 2011. [63] F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa. Symmetry protection of topological phases in one-dimensional quantum spin systems. Phys. Rev. B, 85(7), February 2012. [64] L. Fidkowski and A. Kitaev. Topological phases of fermions in one dimension. Phys. Rev. B, 83(7):075103, 2011. [65] M. Sanz, M. M. Wolf, D. Pérez-García, and J. I. Cirac. Matrix product states: Symmetries and two-body Hamiltonians. Phys. Rev. A, 79(4), April 2009. [66] J. I. Cirac, D. Pérez-García, N. Schuch, and F. Verstraete. Matrix product density operators: Renormalization fixed points and boundary theories. Ann. Phys., 378:100–149, March 2017. [67] G. De las Cuevas, J. I. Cirac, N. Schuch, and D. Pérez- García. Irreducible forms of matrix product states: Theory and applications. J. Math. Phys., 58(12):121901, December 2017. [68] Y. Ogata. Classification of gapped ground state phases in quantum spin systems. arXiv preprint, arXiv:2110.04675, 2021. [69] I. Cirac, D. Pérez-García, N. Schuch, and F. Verstraete. Matrix product states and projected entangled pair states: Concepts, symmetries, and theorems. arXiv preprint arXiv:2011.12127, 2020. [70] R. Carbone, E. Sasso, and V. Umanità. Decoherence for Quantum Markov Semi-Groups on Matrix Algebras. Ann. Henri Poincaré, 14(4):681–697, August 2012. [71] F. Cesi. Quasi-factorization of the entropy and logarithmic Sobolev inequalities for Gibbs random fields. Probab. Theory Relat. Fields, 120(4):569–584, 2001. [72] P. Dai Pra, A. M. Paganoni, and G. Posta. Entropy inequalities for unbounded spin systems. Ann. Probab., 30(4):1959–1976, 10 2002. [73] Á. Capel. Quantum Logarithmic Sobolev Inequalities for Quantum Many-Body Systems: An approach via Quasi- Factorization of the Relative Entropy. Ph.D. thesis at Universidad Autónoma de Madrid, 2019. [74] I. Bardet, Á. Capel, and C. Rouzé. Approximate tensorization of the relative entropy for noncommuting conditional expectations. Ann. Henri Poincaré, 23:101–140, 2022. [75] N. LaRacuente. Quasi-factorization and multiplicative comparison of subalgebra-relative entropy. arXiv preprint, arXiv:1912.00983, 2019. [76] M. Junge and J. Parcet. Mixed-norm inequalities and operator space Lp embedding theory. American Mathematical Soc., 2010. [77] D. Aharonov, I. Arad, Z. Landau, and U. Vazirani. The detectability lemma and quantum gap amplification. In Proceedings of the forty-first annual ACM symposium on Theory of computing, pages 417–426, 2009. [78] D. Aharonov, I. Arad, Z. Landau, and U. Vazirani. Quantum Hamiltonian complexity and the detectability lemma. arXiv preprint, arXiv:1011.3445, 2010. [79] I. Bardet and C. Rouzé. Hypercontractivity and logarithmic sobolev inequality for non-primitive quantum markov semigroups and estimation of decoherence rates. arXiv preprint, arXiv:1803.05379, 2018. [80] L. Gao, M. Junge, and N. LaRacuente. Fisher information and logarithmic sobolev inequality for matrix-valued functions. In Ann. Henri Poincaré, volume 21, pages 3409–3478. Springer, 2020. [81] G. Pisier. Non-commutative vector valued Lp-spaces and completely p-summing maps. Société mathématique de France, 1998. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5edb2da8-669b-42d1-867d-8fe3144eb216 | |
relation.isAuthorOfPublication.latestForDiscovery | 5edb2da8-669b-42d1-867d-8fe3144eb216 |
Download
Original bundle
1 - 1 of 1