Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Large-N pion scattering at finite temperature: The f_0(500) and chiral restoration

dc.contributor.authorCortés, Santiago
dc.contributor.authorGómez Nicola, Ángel
dc.contributor.authorMorales, John
dc.date.accessioned2023-06-18T06:50:58Z
dc.date.available2023-06-18T06:50:58Z
dc.date.issued2016-02-05
dc.description© 2016 American Physical Society. Work partially supported by research Contracts No. FPA2011-27853-C02-02 (Spanish “Ministerio de Ciencia e Innovación”), No. FPA2014-53375-C2-2-P (Spanish “Ministerio de Economía y Competitividad”). We also acknowledge the support of the EU FP7 HadronPhysics3 project, the Spanish Hadron Excellence Network (Spanish “Ministerio de Economía y Competitividad” Contract No. FIS2014-57026-REDT) and the UCM-Banco de Santander Contract No. GR3/14 910309. S. C. thanks Professor José Rolando Roldán and the High Energy Physics group of Universidad de los Andes. In particular, he acknowledges financial support from that University to perform a research stay at Universidad Complutense during which this work was partially accomplished. We are also grateful to José Ramón Peláez and Jacobo Ruiz de Elvira for useful comments and for providing us with their parametrization values for the phase shift.
dc.description.abstractWe consider the O(N + 1)/O(N) nonlinear sigma model for large N as an effective theory for low-energy QCD at finite temperature T, in the chiral limit. At T = 0 this formulation provides a good description of scattering data in the scalar channel and dynamically generates the f_0(500) pole, the pole position lying within experimental determinations. Previous T = 0 results with this model are updated using newer analysis of pion scattering data. We calculate the pion scattering amplitude at finite T and show that it exactly satisfies thermal unitarity, which had been assumed but not formally proven in previous works. We discuss the main differences with the T = 0 result, and we show that one can define a proper renormalization scheme with T = 0 counterterms such that the renormalized amplitude can be chosen to depend only on a few parameters. Next, we analyze the behavior of the f_0(500) pole at finite T, which is consistent with chiral symmetry restoration when the scalar susceptibility is saturated by the f_0(500) state, in a second-order transition scenario and in accordance with lattice and theoretical analysis.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN), España
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO), España
dc.description.sponsorshipRed de Excelencia "Física Hadrónica" = Spanish Hadron Excellence Network (MINECO), España
dc.description.sponsorshipUniversidad Complutense de Madrid (UCM)
dc.description.sponsorshipBanco Santander Central Hispano (BSCH)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/36520
dc.identifier.doi10.1103/PhysRevD.93.036001
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.93.036001
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24393
dc.issue.number3
dc.journal.titlePhysical Review D
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFPA2011-27853-C02-02
dc.relation.projectIDFPA2014-53375-C2-2-P
dc.relation.projectIDFIS2014-57026-REDT
dc.relation.projectIDGR3/14 910309
dc.relation.projectIDHadronPhysics3 (283286)
dc.rights.accessRightsopen access
dc.subject.cdu53-71
dc.subject.keywordNonlinear sigma-model
dc.subject.keywordTo-leading order
dc.subject.keywordPerturbation-theory
dc.subject.keywordOne-loop
dc.subject.keywordPhase-transition
dc.subject.keywordQuark matter
dc.subject.keywordLow-energy
dc.subject.keywordLimit
dc.subject.keywordLagrangians
dc.subject.keywordExpansion.
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleLarge-N pion scattering at finite temperature: The f_0(500) and chiral restoration
dc.typejournal article
dc.volume.number93
dcterms.references1. Y. Aoki, S. Borsanyi, S. Durr, Z. Fodor, S. D. Katz, S. Krieg, and K. K. Szabo, J. High Energy Phys. 06 (2009) 088. 2. S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo (Wuppertal-Budapest Collaboration), J. High Energy Phys. 09 (2010) 073. 3. A. Bazavov, T. Bhattacharya, M. Cheng, C. DeTar, H. T. Ding, S. Gottlieb, R. Gupta, P. Hegde et al., Phys. Rev. D 85, 054503 (2012). 4. M. I. Buchoff, M. Cheng, N. H. Christ, H.-T. Ding, C. Jung, F. Karsch, Z. Lin, and R. D. Mawhinney et al., Phys. Rev. D 89, 054514 (2014). 5. T. Bhattacharya, M. I. Buchoff, N. H. Christ, H.-T. Ding, R. Gupta, C. Jung, F. Karsch, Z. Lin et al., Phys. Rev. Lett. 113, 082001 (2014). 6. R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338 (1984). 7. J. Berges, N. Tetradis, and C. Wetterich, Phys. Rep. 363, 223 (2002). 8. S. Ejiri, F. Karsch, E. Laermann, C. Miao, S. Mukherjee, P. Petreczky, C. Schmidt, W. Soeldner, and W. Unger, Phys. Rev. D 80, 094505 (2009). 9. T. Hatsuda and T. Kunihiro, Phys. Rev. Lett. 55, 158 (1985). 10. A. Bochkarev and J. I. Kapusta, Phys. Rev. D 54, 4066 (1996). 11. K. A. Olive et al. (Particle Data Group Collaboration), Chin. Phys. C 38, 090001 (2014). 12. J. R. Pelaez, arXiv:1510.00653. 13. V. Bernard, U. G. Meissner, and I. Zahed, Phys. Rev. D 36, 819 (1987). 14. J. P. Blaizot, R. Mendez-Galain, and N. Wschebor, Ann. Phys. (Amsterdam) 307, 209 (2003). 15. M. Buballa, Phys. Rep. 407, 205 (2005). 16. S. Cortés and I. Roditi, Local Composite Operators and the Mass Gap of the Gross-Neveu Model (Lambert Academic Publishing, Germany, 2012). 17. S. Weinberg, Physica A (Amsterdam) 96, 327 (1979). 18. J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984). 19. J. Gasser and H. Leutwyler, Phys. Lett. B 184, 83 (1987). 20. P. Gerber and H. Leutwyler, Nucl. Phys. B321, 387 (1989). 21. A. Dobado and J. R. Pelaez, Phys. Rev. D 56, 3057 (1997). 22. A. G. Nicola, F. J. Llanes-Estrada, and J. R. Pelaez, Phys. Lett. B 550, 55 (2002). 23. A. Dobado, A. G. Nicola, F. J. Llanes-Estrada, and J. R. Pelaez, Phys. Rev. C 66, 055201 (2002). 24. D. Fernandez-Fraile and A. G. Nicola, Eur. Phys. J. C 62, 37 (2009). 25. A. G. Nicola and R. T. Andres, Phys. Rev. D 89, 116009 (2014). 26. A. G. Nicola, J. R. de Elvira, and R. T. Andres, Phys. Rev. D 88, 076007 (2013). 27. A. Heinz, S. Struber, F. Giacosa, and D. H. Rischke, Phys. Rev. D 79, 037502 (2009). 28. A. G. Nicola, J. R. Pelaez, A. Dobado, and F. J. Llanes-Estrada, AIP Conf. Proc. 660, 156 (2003). 29. A. Andronic, P. Braun-Munzinger, and J. Stachel, Phys. Lett. B 673, 142 (2009); 678, 516(E) (2009). 30. P. Huovinen and P. Petreczky, Nucl. Phys. A837, 26 (2010). 31. R. Rapp and J. Wambach, Adv. Nucl. Phys. 25, 1 (2002). 32. S. Turbide, R. Rapp, and C. Gale, Phys. Rev. C 69, 014903 (2004). 33. A. Dobado and J. R. Pelaez, Phys. Lett. B 286, 136 (1992). 34. A. Dobado and J. Morales, Phys. Rev. D 52, 2878 (1995). 35. S. Jeon and J. I. Kapusta, Phys. Rev. D 54, 6475 (1996). 36. J. O. Andersen, D. Boer, and H. J. Warringa, Phys. Rev. D 70, 116007 (2004). 37. H. A. Weldon, Phys. Rev. D 26, 2789 (1982). 38. M. Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, England, 1996). 39. J. I. Kapusta and C. Gale, Finite-Temperature Field Theory: Principles and Applications (Cambridge University Press, Cambridge, England, 2006). 40. J. P. Blaizot, A. Ipp, and A. Rebhan, Ann. Phys. (Amsterdam) 321, 2128 (2006). 41. I. S. Gerstein, R. Jackiw, S. Weinberg, and B. W. Lee, Phys. Rev. D 3, 2486 (1971). 42. T. Appelquist and C. W. Bernard, Phys. Rev. D 23, 425 (1981); L. Tataru, 12, 3351 (1975). 43. A. Dobado, A. Gomez-Nicola, A. L. Maroto, and J. R. Pelaez, in Effective Lagrangians for the Standard Model, Texts and Monographs in Physics (Springer-Verlag, New York, 1997). 44. J. Bijnens, G. Colangelo, G. Ecker, J. Gasser, and M. E. Sainio, Phys. Lett. B 374, 210 (1996); Nucl. Phys. B508, 263 (1997); B517, 639 (1998). 45. J. A. Oller, E. Oset, and J. R. Pelaez, Phys. Rev. Lett. 80, 3452 (1998). 46. J. R. Pelaez and G. Rios, Phys. Rev. Lett. 97, 242002 (2006). 47. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University Press, Oxford, UK, 2002). 48. G. Leibbrandt, Rev. Mod. Phys. 47, 849 (1975). 49. G. Grayer et al., Nucl. Phys. B64, 134 (1973); B75, 189 (1974). 50. R. Garcia-Martin, R. Kaminski, J. R. Pelaez, and J. R. de Elvira, Phys. Rev. Lett. 107, 072001 (2011). 51. J. R. Batley et al. (NA48-2 Collaboration), Eur. Phys. J. C 70, 635 (2010). 52. J. Bijnens and I. Jemos, Nucl. Phys. B854, 631 (2012). 53. A. G. Nicola and J. R. Pelaez, Phys. Rev. D 65, 054009 (2002). 54. J. Nebreda, J. R. Pelaez, and G. Rios, Phys. Rev. D 83, 094011 (2011). 55. A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002).
dspace.entity.typePublication
relation.isAuthorOfPublication574aa06c-6665-4e9a-b925-fa7675e8c592
relation.isAuthorOfPublication.latestForDiscovery574aa06c-6665-4e9a-b925-fa7675e8c592

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gnicola51libre.pdf
Size:
1.74 MB
Format:
Adobe Portable Document Format

Collections