Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Wind Power Forecasting with Machine Learning Algorithms in Low-Cost Devices

dc.contributor.authorPeñacoba-Yagüe, Mario
dc.contributor.authorSierra-García, Jesús Enrique
dc.contributor.authorSantos Peñas, Matilde
dc.contributor.authorBuestán-Andrade, Pablo Andrés
dc.date.accessioned2024-11-26T14:43:21Z
dc.date.available2024-11-26T14:43:21Z
dc.date.issued2024-04-18
dc.description.abstractThe urgent imperative to mitigate carbon dioxide (CO2) emissions from power generation poses a pressing challenge for contemporary society. In response, there is a critical need to intensify efforts to improve the efficiency of clean energy sources and expand their use, including wind energy. Within this field, it is necessary to address the variability inherent to the wind resource with the application of prediction methodologies that allow production to be managed. At the same time, to extend its use, this clean energy should be made accessible to everyone, including on a small scale, boosting devices that are affordable for individuals, such as Raspberry and other low-cost hardware platforms. This study is designed to evaluate the effectiveness of various machine learning (ML) algorithms, with special emphasis on deep learning models, in accurately forecasting the power output of wind turbines. Specifically, this research deals with convolutional neural networks (CNN), fully connected networks (FC), gated recurrent unit cells (GRU), and transformer-based models. However, the main objective of this work is to analyze the feasibility of deploying these architectures on various computing platforms, comparing their performance both on conventional computing systems and on other lower-cost alternatives, such as Raspberry Pi 3, in order to make them more accessible for the management of this energy generation. Through training and a rigorous benchmarking process, considering accuracy, real-time performance, and energy consumption, this study identifies the optimal technique to accurately model such real-time series data related to wind energy production, and evaluates the hardware implementation of the studied models. Importantly, our findings demonstrate that effective wind power forecasting can be achieved on low-cost hardware platforms, highlighting the potential for widespread adoption and the personal management of wind power generation, thus representing a fundamental step towards the democratization of clean energy technologies.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationBuestán-Andrade, P. A., Peñacoba-Yagüe, M., Sierra-García, J. E., & Santos, M. (2024). Wind Power Forecasting with Machine Learning Algorithms in Low-Cost Devices. Electronics, 13(8), 1541.
dc.identifier.doi10.3390/electronics13081541
dc.identifier.officialurlhttps://www.mdpi.com/2079-9292/13/8/1541
dc.identifier.urihttps://hdl.handle.net/20.500.14352/111085
dc.issue.number8
dc.journal.titleElectronics
dc.language.isoeng
dc.page.final1565
dc.page.initial1541
dc.publisherMdpi
dc.relation.projectIDPID21-123543OB-C21
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordMachine learning
dc.subject.keywordCNN
dc.subject.keywordTransformers
dc.subject.keywordForecasting
dc.subject.keywordWind energy
dc.subject.keywordWind turbine
dc.subject.keywordRaspberry Pi
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleWind Power Forecasting with Machine Learning Algorithms in Low-Cost Devices
dc.typejournal article
dc.volume.number13
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
electronics-13-01541.pdf
Size:
4.86 MB
Format:
Adobe Portable Document Format

Collections