Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Chiral extrapolation of light resonances from one and two-loop unitarized chiral perturbation theory versus lattice results

dc.contributor.authorPeláez Sagredo, José Ramón
dc.contributor.authorRios, G.
dc.date.accessioned2023-06-20T04:02:25Z
dc.date.available2023-06-20T04:02:25Z
dc.date.issued2010-11-01
dc.description©2010 The American Physical Society. We thank C. Hanhart for useful discussions. Work partially supported by Spanish Ministerio de Educación y Ciencia research Contract Nos. FPA2007-29115-E, FPA2008-00592, and FIS2006- 03438, U. Complutense/ Banco Santander Grant Nos. PR34/07-15875-BSCH and UCM-BSCH GR58/08 910309. We acknowledge the support of the European Community-Research Infrastructure Integrating Activity Study of Strongly Interacting Matter (acronym HadronPhysics2, Grant Agreement No. 227431) under the Seventh Framework Programme of EU.
dc.description.abstractWe study the pion mass dependence of the ρ(770) and f_0(600) masses and widths from one and two-loop unitarized chiral perturbation theory ( ChPT). We show the consistency of one-loop calculations with lattice results for the M_ρ, f_π and the isospin-2 scattering length a-20. Then, we develop and apply the modified inverse amplitude method formalism for two-loop ChPT. In contrast to the f_0(600), the ρ(770) is rather sensitive to the two-loop ChPT parameters-our main source of systematic uncertainty. We thus provide two-loop unitarized fits constrained by lattice information on M_ρ, f_π, by the q q̅ leading 1/N_c behavior of the ρ and by existing estimates of low-energy constants. These fits yield relatively stable predictions up to m_π ̴̲ 300-350 MeV for the rho coupling and width as well as for all the f_0(600) parameters. We confirm, to two loops, the weak m_π dependence of the rho coupling and the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin relation, and the existence of two virtual f_0(600) poles for sufficiently high m_π. At two loops one of these poles becomes a bound state when m_π is somewhat larger than 300 MeV.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipMinisterio de Educacion y Ciencia
dc.description.sponsorshipUniversidad Complutense/Banco Santander
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/35071
dc.identifier.doi10.1103/PhysRevD.82.114002
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.82.114002
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44838
dc.issue.number11
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectIDHadronPhysics2 (227431)
dc.relation.projectIDFPA2007-29115-E
dc.relation.projectIDFPA2008-00592
dc.relation.projectIDFIS2006-03438
dc.relation.projectIDPR34/07-15875-BSCH
dc.relation.projectIDUCM-BSCH GR58/08 910309
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordPi-pi scattering
dc.subject.keywordScalar mesons
dc.subject.keywordGev-c
dc.subject.keywordDispersion-relations
dc.subject.keywordHigh statistics
dc.subject.keywordForm-factors
dc.subject.keywordLow-energy
dc.subject.keywordOne-loop
dc.subject.keywordSigma
dc.subject.keywordLagrangians
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleChiral extrapolation of light resonances from one and two-loop unitarized chiral perturbation theory versus lattice results
dc.typejournal article
dc.volume.number82
dcterms.references[1] C. Hanhart, J. R. Pelaez, and G. Rios, Phys. Rev. Lett. 100, 152001 (2008). [2] T. N. Truong, Phys. Rev. Lett. 61, 2526 (1988); 67, 2260 (1991); A. Dobado et al., Phys. Lett. B 235, 134 (1990). [3] A. Dobado and J. R. Peláez, Phys. Rev. D 47, 4883 (1993); 56, 3057 (1997). [4] A. Gomez Nicola, J. R. Pelaez, and G. Rios, Phys. Rev. D 77, 056006 (2008). [5] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984). [6] J. A. Oller, E. Oset, and J. R. Pelaez, Phys. Rev. Lett. 80, 3452 (1998); Phys. Rev. D 59, 074001 (1999). [7] J. A. Oller and E. Oset, Nucl. Phys. A620, 438 (1997); A652, 407(E) (1999). [8] Ph. Boucaud et al. (ETM Collaboration), Phys. Lett. B 650, 304 (2007). [9] S. R. Beane et al., Phys. Rev. D 77, 014505 (2008). [10] J. Noaki et al., Proc. Sci. (2008) 107 [arXiv:0810. 1360]. [11] P. C. Bruns and U.-G. Meißner, Eur. Phys. J. C 40, 97 (2005). [12] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010). [13] S. Aoki et al. (CP-PACS Collaboration), Phys. Rev. D 76, 094506 (2007). [14] S. Weinberg, Phys. Rev. 130, 776 (1963); V. Baru, J. Haidenbauer, C. Hanhart, Yu. Kalashnikova, and A. E. Kudryavtsev, Phys. Lett. B 586, 53 (2004). [15] D. Gamermann, J. Nieves, E. Oset, and E. Ruiz Arriola, Phys. Rev. D 81, 014029 (2010). [16] J. Nebreda and J. R. Pelaez, Phys. Rev. D 81, 054035 (2010). [17] J. Nieves, M. Pavon Valderrama, and E. Ruiz Arriola, Phys. Rev. D 65, 036002 (2002). [18] J. Bijnens, G. Colangelo, G. Ecker, J. Gasser, and M. E. Sainio, Nucl. Phys.B508, 263 (1997);B517, 639(E) (1998). [19] J. Bijnens, Prog. Part. Nucl. Phys. 58, 521 (2007). [20] P. Buettiker, S. Descotes-Genon, and B. Moussallam, Eur. Phys. J. C 33, 409 (2004); S. Descotes-Genon and B. Moussallam, Eur. Phys. J. C 48, 553 (2006). [21] G. Amoros, J. Bijnens, and P. Talavera, Nucl. Phys. B602, 87 (2001). [22] L. Girlanda, M. Knecht, B. Moussallam, and J. Stern, Phys. Lett. B 409, 461 (1997). [23] G. Colangelo, J. Gasser, and H. Leutwyler, Nucl. Phys. B603, 125 (2001). [24] G. Ecker, J. Gasser, A. Pich, and E. de Rafael, Nucl. Phys. B321, 311 (1989); J. F. Donoghue, C. Ramírez, and G. Valencia, Phys. Rev. D 39, 1947 (1989). [25] J. R. Peláez, J. Nebreda, and G. Rios, arXiv:1007.3461 [Prog. Theor. Phys. (to be published)]. [26] J. R. Peláez, C. Hanhart, J. Nebreda, and G. Rios, AIP Conf. Proc. 1257, 141 (2010); G. Rios, A. G. Nicola, C. Hanhart, and J. R. Peláez, AIP Conf. Proc. 1030, 268 (2008); G. Rios Marquez, A. Gomez Nicola, C. Hanhart, and J. R. Peláez Sagredo, Proc. Sci., EFT09 (2009) 043 [arXiv:0905.3489]. [27] J. R. Peláez, Phys. Rev. Lett. 92, 102001 (2004). [28] J. R. Peláez and G. Rios, Phys. Rev. Lett. 97, 242002 (2006). [29] A. Gomez Nicola and J. R. Peláez, Phys. Rev. D 65, 054009 (2002); J. R. Peláez, Mod. Phys. Lett. A 19, 2879 (2004); F. Guerrero and J. A. Oller, Nucl. Phys. B537, 459 (1999); B602, 641(E) (2001); J. Nieves and E. Ruiz Arriola, Phys. Lett. B 455, 30 (1999). [30] J. R. Peláez and G. Rios, arXiv:0905.4689; J. R. Peláez and G. Rios, in Proceedings of the 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2007), Julich, Germany econf 070910, 157 (2007); J. R. Peláez, AIP Conf. Proc. 892, 72 (2007). [31] C. W. Bernard et al., Phys. Rev. D 64, 054506 (2001). [32] C. Allton et al. (RBC Collaboration and UKQCD Collaboration), Phys. Rev. D 76, 014504 (2007). [33] G. Grayer et al., Nucl. Phys. B75, 189 (1974). [34] C. R. Allton et al., Phys. Lett. B 628, 125 (2005). [35] M. Gockeler et al. (QCDSF Collaboration), arXiv:hep- lat/ 0810.5337. [36] J. R. Pelaez and F. J. Yndurain, Phys. Rev. D 71, 074016 (2005). [37] L. Rosselet et al., Phys. Rev. D 15, 574 (1977); S. Pislak et al. (BNL-E865 Collaboration), Phys. Rev. Lett. 87, 221801 (2001); J. R. Batley et al. (NA48/2 Collaboration), Eur. Phys. J. C 54, 411 (2008). [38] K. Kawarabayashi and M. Suzuki, Phys. Rev. Lett. 16, 255 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071 (1966). [39] H. Leutwyler, AIP Conf. Proc. 1030, 46 (2008); I. Caprini, G. Colangelo, and H. Leutwyler, Phys. Rev. Lett. 96, 132001 (2006). [40] F. J. Yndurain, R. García-Martín, and J. R. Peláez, Phys. Rev. D 76, 074034 (2007). [41] R. Kaminski, G. Mennessier, and S. Narison, Phys. Lett. B 680, 148 (2009). [42] J. A. Oller, Nucl. Phys. A727, 353 (2003). [43] C. Hanhart, R. L. Jaffe, J. R. Peláez, and G. Ríos (unpublished). [44] F. Cannata, J. P. Dedonder, and L. Lesniak, Phys. Lett. B 207, 115 (1988); Z. Phys. A 334, 457 (1989); R. Kaminski, L. Lesniak, and B. Loiseau, Eur. Phys. J. C 9, 141 (1999); A. Patkos, Z. Szep, and P. Szepfalusy, Phys. Rev. D 66, 116004 (2002); D. Fernandez-Fraile, A. Gomez Nicola, and E. T. Herruzo, Phys. Rev. D 76, 085020 (2007). [45] S. Prelovsek, T. Draper, C. B. Lang, M. Limmer, K. F. Liu, N. Mathur, and D. Mohler, Phys. Rev. D 82, 094507 (2010); S. Prelovsek, C. B. Lang, M. Limmer, D. Mohler, T. Draper, K. F. Liu, and N. Mathur, Proc. Sci., LAT2009 (2009) 103 [arXiv:0910.2749]. [46] N. Mathur et al., Phys. Rev. D 76, 114505 (2007). [47] M. G. Alford and R. L. Jaffe, Nucl. Phys. B578, 367 (2000). [48] T. Kunihiro, S. Muroya, A. Nakamura, C. Nonaka, M. Sekiguchi, and H. Wada, Nucl. Phys. B, Proc. Suppl. 186, 294 (2009); T. Kunihiro, S. Muroya, A. Nakamura, C. Nonaka, M. Sekiguchi, and H. Wada (SCALAR Collaboration), Phys. Rev. D 70, 034504 (2004). [49] X. Feng, K. Jansen, and D. B. Renner, Phys. Lett. B 684, 268 (2010). [50] S. D. Protopopescu et al., Phys. Rev. D 7, 1279 (1973); P. Estabrooks and A. D. Martin, Nucl. Phys. B79, 301 (1974); W. Hoogland et al., Nucl. Phys. B126, 109 (1977); M. J. Losty et al., Nucl. Phys. B69, 185 (1974); N. B. Durusoy et al., Phys. Lett. 45B, 517 (1973).
dspace.entity.typePublication
relation.isAuthorOfPublication70900239-cb8b-49f3-931f-9dc6a8b7d8d5
relation.isAuthorOfPublication.latestForDiscovery70900239-cb8b-49f3-931f-9dc6a8b7d8d5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pelaezsagredo22libre.pdf
Size:
446.25 KB
Format:
Adobe Portable Document Format

Collections