A formula for the conductor of a semimodule of a numerical semigroup with two generators
dc.contributor.author | Almirón, Patricio | |
dc.contributor.author | Moyano Fernández, Julio-José | |
dc.date.accessioned | 2023-06-17T08:28:40Z | |
dc.date.available | 2023-06-17T08:28:40Z | |
dc.date.issued | 2021-03-30 | |
dc.description.abstract | We provide an expression for the conductor c(Δ) of a semimodule Δ of a numerical semigroup Δ with two generators in terms of the syzygy module of Δ and the generators of the semigroup. In particular, we deduce that the difference between the conductor of the semimodule and the conductor of the semigroup is an element of Γ, as well as a formula for c(Δ) in terms of the dual semimodule of Δ. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.sponsorship | Universitat Jaume I | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/73962 | |
dc.identifier.doi | 10.1007/s00233-021-10182-1 | |
dc.identifier.issn | 0037-1912 | |
dc.identifier.officialurl | https://link.springer.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/7237 | |
dc.journal.title | Semigroup forum | |
dc.language.iso | eng | |
dc.page.final | 285 | |
dc.page.initial | 278 | |
dc.publisher | Springer | |
dc.relation.projectID | MTM2016-76868-C2-1-P ;PGC2018-096446-B-C22 | |
dc.relation.projectID | UJI-B2018-10 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512 | |
dc.subject.cdu | 512.53 | |
dc.subject.keyword | Numerical semigroup | |
dc.subject.keyword | Frobenius problem | |
dc.subject.keyword | Γ-semimodule | |
dc.subject.keyword | Syzygy. | |
dc.subject.ucm | Álgebra | |
dc.subject.ucm | Grupos (Matemáticas) | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | A formula for the conductor of a semimodule of a numerical semigroup with two generators | |
dc.type | journal article | |
dc.volume.number | 103 | |
dcterms.references | 1. A. Brauer, J.E. Shockley, On a problem of Frobenius, J. reine und angewandte Math. 211 (1962), 215–220. 2. F. Curtis, On formulas for the Frobenius number of a numerical semigroup, Math. Scand. 67, no. 2 (1990), 190–192. 3. J.J. Moyano-Fernández, J. Uliczka, Hilbert depth of graded modules over polynomial rings in two variables, J. Algebra 373 (2013), 130–152. 4. J.J. Moyano-Fernández, J. Uliczka, Lattice paths with given number of turns and numerical semi-groups, Sem. Forum 88, no. 3, (2014), 631–646. 5. J.J. Moyano-Fernández, J. Uliczka, Duality and syzygies for semimodules over numerical semigroups, Sem. Forum 92, no. 3, (2016), 675–690. 6. J. L. Ramírez Alfonsín, The Diophantine Frobenius problem, Oxford Lecture Series in Mathematics and its Applications 30, Oxford University Press, Oxford (2005) 7. J. C. Rosales, P. A. García Sánchez, Numerical Semigroups, Springer, New York (2009). | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1