Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Counterexample Guided Abstraction Refinement for Stability Analysis

dc.conference.title28th International Conference on Computer Aided Verification (CAV)
dc.contributor.authorPrabhakar, Pavithra
dc.contributor.authorGarcía Soto, Miriam
dc.date.accessioned2025-01-24T18:31:48Z
dc.date.available2025-01-24T18:31:48Z
dc.date.issued2016-07-17
dc.description.abstractIn this paper, we present a counterexample guided abstraction refinement (Cegar) algorithm for stability analysis of polyhedral hybrid systems. Our results build upon a quantitative predicate abstraction and model-checking algorithm for stability analysis, which returns a counterexample indicating a potential reason for instability. The main contributions of this paper include the validation of the counterexample and refinement of the abstraction based on the analysis of the counterexample. The counterexample returned by the quantitative predicate abstraction analysis is a cycle such that the product of the weights on its edges is greater than 1. Validation involves checking if there exists n infinite diverging execution which follows the cycle infinitely many times. Unlike in the case of Cegar for safety, the validation problem is not a bounded model-checking problem. Using novel insights, we present a simple characterization for the existence of an infinite diverging execution in terms of the satisfaction of a first order logic formula which can be efficiently solved. Similarly, the refinement is more involved, since, there is a priori no bound on the number of predecessor computation steps that need to be performed to invalidate the abstract counterexample. We present strategies for refinement based on the insights from the validation step. We have implemented the validation and refinement algorithms and use the stability verification tool Averist in the back end for performing the abstraction and model-checking. We compare the Cegar algorithm with Averist and report experimental results demonstrating the benefits of counterexample guided refinement.
dc.description.departmentDepto. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.1007/978-3-319-41528-4_27
dc.identifier.officialurlhttps://link.springer.com/chapter/10.1007/978-3-319-41528-4_27
dc.identifier.urihttps://hdl.handle.net/20.500.14352/116098
dc.language.isoeng
dc.relation.projectIDMarie Curie Career Integration Grant no. 631622
dc.relation.projectIDNSF CAREER award no. 1552668
dc.relation.projectIDresearch grant no. BES-2013-065076 from the Spanish Ministry of Economy and Competitiveness
dc.rights.accessRightsopen access
dc.subject.ucmInformática (Informática)
dc.subject.unesco1102.05 Sistemas Formales
dc.subject.unesco1207.02 Sistemas de Control
dc.titleCounterexample Guided Abstraction Refinement for Stability Analysis
dc.typeconference paper
dc.type.hasVersionAM
dspace.entity.typePublication
relation.isAuthorOfPublicationf286c886-bc0d-4506-beeb-42212f4a0247
relation.isAuthorOfPublication.latestForDiscoveryf286c886-bc0d-4506-beeb-42212f4a0247

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cav16_preprint.pdf
Size:
1.31 MB
Format:
Adobe Portable Document Format

Collections