Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Spin transition nanoparticles made electrochemically

dc.contributor.authorPozo, Guillermo
dc.contributor.authorPresa Muñoz De Toro, Patricia Marcela De La
dc.contributor.authorPrato, Rafael
dc.contributor.authorMorales Casero, Irene
dc.contributor.authorMarín Palacios, María Pilar
dc.contributor.authorFransaer, Jan
dc.contributor.authorDominguez-Benetton, Xochitl
dc.date.accessioned2023-06-16T15:16:51Z
dc.date.available2023-06-16T15:16:51Z
dc.date.issued2020-03-07
dc.description©2020 Royal Society of Chemistry G. Pozo acknowledges the funding from the European Union's Horizon 2020 research and innovation programme MSCA-IF-2017, under grant agreement no. 796320 (MAGDEx: Unmet MAGnetic properties in micro and nano-particles by synthesis through gas diffusion electrocrystallisation, (GDEx).; X. Dominguez-Benetton thanks to VITO's strategic research funds and management for the possibility to conduct this pioneering research. GP, RP, JF, and XDB thank the support from the Flemish SIM MaRes programme, under grant agreement no. 150626 (Get-A-Met project). XDB and JF thanks the funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654100 (CHPM2030 project). This work has been supported by the Ministerio Espanol de Economia y Competitividad (MINECO) RTI2018-095856-B-C21, and Comunidad de Madrid S2013/MIT-2850 NANOFRONTMAG projects. We would also like to acknowledge Myriam Mertens for fruitful discussions and her support on XRD analysis, as well as Kristof Tirez and Wilfried Brusten for assistance with analytical measurements.
dc.description.abstractMaterials displaying novel magnetic ground states signify the most exciting prospects for nanoscopic devices for nanoelectronics and spintronics. Spin transition materials, e.g., spin liquids and spin glasses, are at the forefront of this pursuit; but the few synthesis routes available do not produce them at the nanoscale. Thus, it remains an open question if and how their spin transition nature persists at such small dimensions. Here we demonstrate a new route to synthesize nanoparticles of spin transition materials, gas-diffusion electrocrystallization (GDEx), wherein the reactive precipitation of soluble metal ions with the products of the oxygen reduction reaction (ORR), i.e., in situ produced H_2O_2, OH^-, drives their formation at the electrochemical interface. Using mixtures of Cu^(2+) and Zn^(2+) as the metal precursors, we form spin transition materials of the herbertsmithite family-heralded as the first experimental material known to exhibit the properties of a quantum spin liquid (QSL). Single-crystal nanoparticles of similar to 10-16 nm were produced by GDEx, with variable Cu/Zn stoichiometry at the interlayer sites of Zn_xCu_(4-x)(OH)_6Cl_2. For x = 1 (herbertsmithite) the GDEx nanoparticles demonstrated a quasi-QSL behavior, whereas for x = 0.3 (0.3 < x < 1 for paratacamite) and x = 0 (clinoatacamite) a spin-glass behavior was evidenced. Finally, our discovery not only confirms redox reactions as the driving force to produce spin transition nanoparticles, but also proves a simple way to switch between these magnetic ground states within an electrochemical system, paving the way to further explore its reversibility and overarching implications.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. H2020
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipFlemish SIM MaRes programme
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/59962
dc.identifier.doi10.1039/c9nr09884d
dc.identifier.issn2040-3364
dc.identifier.officialurlhttp://dx.doi.org/10.1039/c9nr09884d
dc.identifier.relatedurlhttps://pubs.rsc.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6152
dc.issue.number9
dc.journal.titleNanoscale
dc.language.isoeng
dc.page.final5421
dc.page.initial5412
dc.publisherRoyal Society of Chemistry
dc.relation.projectIDMAGDEx (796320); CHPM2030 (654100)
dc.relation.projectIDRTI2018-095856-B-C21
dc.relation.projectIDNANOFRONTMAG-CM (S2013/MIT-2850)
dc.relation.projectIDGet-A-Met (150626)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu538.9
dc.subject.keywordNegative magnetization
dc.subject.keywordReduction
dc.subject.keywordLattices
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.unesco2211 Física del Estado Sólido
dc.titleSpin transition nanoparticles made electrochemically
dc.typejournal article
dc.volume.number12
dspace.entity.typePublication
relation.isAuthorOfPublication84282349-b588-49a8-812f-1f807d37d425
relation.isAuthorOfPublicationbcde57dc-6f82-4bc9-bf9f-2dd5b9d57325
relation.isAuthorOfPublication7fdc4e1c-351d-4061-9ee4-3369d55a3feb
relation.isAuthorOfPublication.latestForDiscoverybcde57dc-6f82-4bc9-bf9f-2dd5b9d57325

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DeLaPresaP 24 libre+CC.pdf.pdf
Size:
3.55 MB
Format:
Adobe Portable Document Format

Collections