Vectors. Dimensions 4 and 8.
Loading...
Download
Official URL
Full text at PDC
Publication date
2023
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
Presentamos un formalismo para el estudio de los vectores, en espacios lineales diferentes, basado en matrices 2x2. Lo denotamos ′formalismo matricial′. Dentro de este formalismo podemos dividir vectores y definimos funciones exponenciales de vectores. Estudiamos los vectores correspondientes a varias transformaciones: rotaciones, boosts y dos generalizaciones. Hacemos explicita la asociación natural de la métrica de Minkowski con este formalismo en dimensión 4 sobre los reales. Al pasar a dimensión 8, extendemos la métrica de Minkowski. También presentamos este espacio usando matrices del tipo de las de
Dirac. Finalmente, hay varias aplicaciones físicas. Sugerimos operadores de creación y de aniquilación para los leptones y quarks como estructuras algebraico-geométricas a partir de una generalización de las cadenas de Jordan-Wigner. Esta investigación es una continuación del Estudio I.1.
Study I,2. We present a formalism for the study of the vectors, in various linear spaces, based in 2×2 matrices. We denote it ′matrix formalism′. In this formalism we can divide vectors and define exponential functions of vectors. We study the vectors corresponding to various transformations: rotations, boosts and two generalizations of them. We make explicit the natural association of the Minkowski metric with this formalism in dimension 4 over the reals. In passing to dimension 8, we extend the Minkowski metric. We also present this last space using Dirac type matrices. Finally, there are several physical applications. We suggest the creation annihilation operator for leptons and quarks as algebraic-geometrical structures through a generalization of the Jordan-Wigner chains. This research is a continuation of the Study I,1
Study I,2. We present a formalism for the study of the vectors, in various linear spaces, based in 2×2 matrices. We denote it ′matrix formalism′. In this formalism we can divide vectors and define exponential functions of vectors. We study the vectors corresponding to various transformations: rotations, boosts and two generalizations of them. We make explicit the natural association of the Minkowski metric with this formalism in dimension 4 over the reals. In passing to dimension 8, we extend the Minkowski metric. We also present this last space using Dirac type matrices. Finally, there are several physical applications. We suggest the creation annihilation operator for leptons and quarks as algebraic-geometrical structures through a generalization of the Jordan-Wigner chains. This research is a continuation of the Study I,1