Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Generalized Casimir forces in nonequilibrium systems

dc.contributor.authorBrito, Ricardo
dc.contributor.authorSoto, R.
dc.date.accessioned2023-06-20T10:34:51Z
dc.date.available2023-06-20T10:34:51Z
dc.date.issued2007-07
dc.description© American Physical Society. The authors thank J. M. Ortiz de Zárate for useful comments. R.B. acknowledges the hospitality of the Departamento de Física of Universidad de Chile. R.B. is supported by Secretaría de Estado de Educación y Universidades and the Projects MOSAICO, FIS2004-271, and UCM PR27/05-13923-BSCH. U.M.B.M. acknowledges COFIN-MIUR Grant No. 2005027808. R.S. acknowledges the hospitality of the Departamento de Física Aplicada I of Universidad Complutense de Madrid. R.S. is supported by Fondecyt research Grants No. 1030993 and No. 1061112 and Fondap Grant No. 11980002.
dc.description.abstractIn the present work, we propose a method to determine fluctuation-induced forces in nonequilibrium systems. These forces are the analog of the well-known Casimir forces, which were originally introduced in quantum field theory and later extended to the area of critical phenomena. The procedure starts from the observation that many nonequilibrium systems exhibit fluctuations with macroscopic correlation lengths, and the associated structure factors strongly depend on the wave vectors for long wavelengths; in some cases the correlations become long range, and the structure factors show algebraic divergences in the long-wavelength limit. The introduction of external bodies into such systems in general modifies the spectrum of these fluctuations, changing the value of the renormalized pressure, which becomes inhomogeneous. This inhomogeneous pressure leads to the appearance of a net force between the external bodies. It is shown that the force can be obtained from the knowledge of the structure factor of the homogeneous system. The mechanism is illustrated by means of a simple example: a reaction-diffusion equation, where the correlation function has a characteristic length. The role of this length in the Casimir force is elucidated.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSecretaría de Estado de Educación y Universidades
dc.description.sponsorshipProjects MOSAICO
dc.description.sponsorshipCOFIN-MIUR
dc.description.sponsorshipFondecyt
dc.description.sponsorshipFondap
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21325
dc.identifier.doi10.1103/PhysRevE.76.011113
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://pre.aps.org/pdf/PRE/v76/i1/e011113 http://arxiv.org/pdf/cond-mat/0611233v1
dc.identifier.relatedurlhttp://pre.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50637
dc.issue.number1, Par
dc.journal.titlePhysical Review E
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2004-271
dc.relation.projectIDUCM PR27/05-13923-BSCH
dc.relation.projectID2005027808
dc.relation.projectID1030993
dc.relation.projectID1061112
dc.relation.projectID11980002.
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleGeneralized Casimir forces in nonequilibrium systems
dc.typejournal article
dc.volume.number76
dcterms.references1. H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948). 2. M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233, (1999). 3. M. Fisher and C. R. de Gennes, C. R. Seances Acad. Sci., Ser. B 287, 207 (1978). 4. H. G. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, 1971). 5. M. Krech, The Casimir Effect in Critical Systems (World Scientific, Singapore, 1994). 6. I. Brankov, D. M. Danchev, N. S. Tonchev, and J. G. Brankov, Theory of Critical Phenomena in Finite-Size Systems: Scaling and Quantum Effects, Series in Modern Condensed Matter Physics Vol. 9 (World Scientific, Singapore, 2000). 7. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Perseus Books, Boulder, CO, 1995). 8. A. Ajdari, L. Peliti, and J. Prost, Phys. Rev. Lett. 66, 1481 (1991). 9. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1993). 10. T. Ueno, S. Balibar, T. Mizusaki, F. Caupin, and E. Rolley, Phys. Rev. Lett. 90, 116102 (2003). 11. A. Martín, A. G. Casielles, M. G. Muñoz, F. Ortega, and R. G. Rubio, Phys. Rev. E 58, 2151 (1998). 12. J. L. Cardy, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Academic Press, New York, 1987), Vol. 11. 13. A. Gambassi and S. Dietrich, J. Stat. Phys. 123, 929 (2006). 14. D. Dantchev and M. Krech, Phys. Rev. E 69, 046119 (2004). 15. P. L. Garrido, J. L. Lebowitz, C. Maes, and H. Spohn, Phys. Rev. A 42, 1954 (1990). 16. J. Machta, I. Oppenheim, and I. Procaccia, Phys. Rev. Lett. 42, 1368 (1979). 17. J. F. Lutsko and J. W. Dufty, Phys. Rev. E 66, 041206 (2002). 18. I. Procaccia, D. Ronis, and I. Oppenheim, Phys. Rev. Lett. 42, 287 (1979). 19. W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon, and J. M. Ortiz de Zárate, Phys. Rev. Lett. 81, 5580 (1998). 20. J. M. Ortiz de Zárate and J. V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006). 21. H. Spohn, J. Phys. A 16, 4275 (1983). 22. G. Grinstein, D. H. Lee, and S. Sachdev, Phys. Rev. Lett. 64, 1927 (1990). 23. I. Pagonabarraga and J. M. Rubí, Phys. Rev. E 49, 267 (1994). 24. C. W. Gardiner, Handbook of Stochastic Methods (Springer- Verlag, Berlin, 2004). 25. D. Bartolo, A. Ajdari, and J.-B. Fournier, Phys. Rev. E 67, 061112 (2003). 26. C. Cattuto, R. Brito, U. M. B. Marconi, F. Nori, and R. Soto, Phys. Rev. Lett. 96, 178001 (2006). 27. T. P. C. van Noije, M. H. Ernst, E. Trizac, and I. Pagonabarraga, Phys. Rev. E 59, 4326 (1999). 28. F. van Wijland, K. Oerding, and H. J. Hilhorst, Physica A 251, 179 (1998). 29. A. Ajdari, B. Duplantier, D. Hone, L. Peliti, and J. Prost, J. Phys. II 2, 487 (1992). 30. J. García-Ojalvo and J. M. Sancho, Noise in Spatially Extended Systems (Springer-Verlag, New York, 1999). 31. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals Series and Products, 5th ed. (Academic Press, New York, 1994). 32. M. Bordag, U. Mohideen, and V. M. Mostepanenko, Phys. Rep. 353, 1 (2001). 33.T. H. Boyer, Phys. Rev. 174, 1764 (1968). 34. S. Aumaitre, C. A. Kruelle, and I. Rehberg, Phys. Rev. E 64, 041305 (2001).
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Brito05libre.pdf
Size:
110.72 KB
Format:
Adobe Portable Document Format

Collections