Modelling and simulation of a polluted water pumping process
dc.contributor.author | Alavani, Chitra | |
dc.contributor.author | Glowinski, Roland | |
dc.contributor.author | Gomez, Susana | |
dc.contributor.author | Ivorra, Benjamín Pierre Paul | |
dc.contributor.author | Joshi, Pallavi | |
dc.contributor.author | Ramos Del Olmo, Ángel Manuel | |
dc.date.accessioned | 2023-06-20T00:22:43Z | |
dc.date.available | 2023-06-20T00:22:43Z | |
dc.date.issued | 2010 | |
dc.description.abstract | The objective of this article is to discuss the modelling and simulation of the motion of oil spots in the open sea, and the effect on the pollutant concentration when a polluted water pumping ship follows a pre-assigned trajectory to remove the pollutant. We assume here that the oil spots motion is due to the coupling of diffusion, the transport from the wind, sea currents and pumping process and the reaction due to the extraction of oil, implying that the mathematical model will be of advection-reaction-diffusion type. Our discussion includes the description of a parallelization of the selected numerical procedure. We present some results of numerical experiments showing that indeed the parallelization makes the model evaluation more efficient | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Spanish Ministry of Science and Innovation | |
dc.description.sponsorship | MOMAT | |
dc.description.sponsorship | Scientific Computing Advanced Training | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17681 | |
dc.identifier.doi | 10.1016/j.mcm.2009.11.023 | |
dc.identifier.issn | 0895-7177 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0895717709004221 | |
dc.identifier.relatedurl | http://www.sciencedirect.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42480 | |
dc.issue.number | 5-6 | |
dc.journal.title | Mathematical and Computer Modelling | |
dc.language.iso | eng | |
dc.page.final | 472 | |
dc.page.initial | 461 | |
dc.publisher | Pergamon-Elsevier Science LTD | |
dc.relation.projectID | MTM2008-04621 | |
dc.relation.projectID | 910480 | |
dc.relation.projectID | 2005-2008 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.95 | |
dc.subject.keyword | Modelling | |
dc.subject.keyword | Advection-reaction-diffusion equation | |
dc.subject.keyword | Upwind scheme | |
dc.subject.keyword | Finite volume scheme | |
dc.subject.keyword | Parallelization | |
dc.subject.keyword | Ea pollution | |
dc.subject.ucm | Análisis matemático | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | Modelling and simulation of a polluted water pumping process | |
dc.type | journal article | |
dc.volume.number | 51 | |
dcterms.references | R. Eymard, T. Gallouet, R. Herbin, A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations, Numer. Math. 92 (1) (2002) 4182. C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res. Natl. Bur. Stand. 49 (1952) 33-53. R. Fletcher, Conjugate gradient methods for indefinite systems, in: G.A. Watson (Ed.), Proc. Dundee Conference on Numerical Analysis, in: Lecture Notes in Mathematics, vol. 506, Springer-Verlag, Berlin, 1976, pp. 73-89. R. Freund, N. Nachtigal, QMR: A quasi-minimal residual method for non-hermitian linear systems, Numer. Math. 60 (1991) 315-339. Q. Ye, A convergence analysis of nonsymmetric Lanczos algorithms, Math. Comp. 56 (1991) 677-691. H.A. Van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat.Comput. 13 (1992) 631-644. G.L.G. Sleijpen, H.A. van der Vorst, Maintaining convergence properties of BiCGstab methods in finite precision arithmetic, Numer. Algorithms 10 (1995) 203-223. T. Gu, X. Zuo, X. Liu, P. Li, An improved parallel hybrid bi-conjugate gradient method suitable for distributed parallel computing, J. Comput. Appl. Math.226 (1) (2009) 55-65. G. Golub, J.M. Ortega, Scientific Computing: An Introduction with Parallel Computing, Academic Press, CA,San Diego, 1993. J.G. Lewis, D.G. Payne, R.A. van de Gejin, Matrix-vector multiplication and conjugate gradient algorithms on distributed memory computers, in:Proceedings ofn Supercomputing'93, 1993, pp. 15-19. R. Glowinski, P. Neittaanmaki, Partial Differential Equations, in: Modelling and Numerical Simulation, Series: Computational Methods in Applied Sciences, vol. 16,Springer, 2008. W. Hundsdorfer, J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, in:Springer Series in Comput. Math.,vol. 33, 2003. J.G. Verwer, B.P. Sommeijer, W. Hundsdorfer, RKC time-stepping for advection-diffusion-reaction problems, J.Comput. Phys. 201 (2004) 61-79. M.P. Calvo, J. de Frutos, J. Novo, Linearly implicit RungeKutta methods for advection-reaction-diffusion equations, Appl. Numer. Math. 37 (4) (2001) 535-549. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, first ed., Cambridge University Press, 2002. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6d5e1204-9b8a-40f4-b149-02d32e0bbed2 | |
relation.isAuthorOfPublication | 581c3cdf-f1ce-41e0-ac1e-c32b110407b1 | |
relation.isAuthorOfPublication.latestForDiscovery | 6d5e1204-9b8a-40f4-b149-02d32e0bbed2 |
Download
Original bundle
1 - 1 of 1