The universal rank-(n − 1) bundle on G(1, n) restricted to subvarieties
dc.contributor.author | Arrondo Esteban, Enrique | |
dc.date.accessioned | 2023-06-20T18:43:09Z | |
dc.date.available | 2023-06-20T18:43:09Z | |
dc.date.issued | 1998 | |
dc.description.abstract | The author has, in several articles, studied varieties in the Grassmannian G(k, n) of kplanes in projective n-space, that are projections from a variety in G(k,N). In the case k = 1 the varieties of dimension n−1 in G(1, n) that are projections from G(1,N) were studied by E. Arrondo and I. Sols [“On congruences of lines in the projective space”, M´em. Soc. Math. Fr., Nouv. S´er. 50 (1992; Zbl 0804.14016)] and solved for n = 3 by E. Arrondo [J. Algebr. Geom. 8, No. 1, 85-101 (1999; Zbl 0945.14030)]. In the paper under review the author studies the other extreme k = n−1, n−2. The case k = n−1 is solved completely, and in the case k = n−2 it is shown that if Y is a smooth variety of dimension s in G(1, n) whose dual Y in G(n − 2, n) is a non-trivial projection from G(n − 2, n + 1), then s = n − 1 and Y is completely classified. The methods are from classical projective geometry and based upon results by E. Rogora [Manuscr. Math. 82, No. 2, 207-226 (1994; Zbl 0812.14038)] and B. Segre. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.sponsorship | DGICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21007 | |
dc.identifier.issn | 0010-0757 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58419 | |
dc.issue.number | 2-3 | |
dc.journal.title | Collectanea mathematica | |
dc.language.iso | eng | |
dc.page.final | 183 | |
dc.page.initial | 173 | |
dc.publisher | PPU | |
dc.relation.projectID | PB93-0440-C03-01 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 514.144 | |
dc.subject.keyword | Grassmannians | |
dc.subject.keyword | linear normality | |
dc.subject.keyword | projections | |
dc.subject.keyword | duality | |
dc.subject.ucm | Geometría | |
dc.subject.unesco | 1204 Geometría | |
dc.title | The universal rank-(n − 1) bundle on G(1, n) restricted to subvarieties | |
dc.type | journal article | |
dc.volume.number | 49 | |
dcterms.references | E. Arrondo, Projections of Grassmannians of lines and characterization of Veronese varieties, preprint (1997). E. Arrondo, M. Bertolini and C. Turrini, Classification of smooth congruences with a fundamental curve, pages 43-56 in Projective geometry with applications (ed. E. Ballico), Marcel Dekker, New York, 1994. E. Arrondo and I. Sols, On congruences of lines in the projective space, Soc. Math. France (M´em. 50), 1992. E. Rogora, Varieties with many lines, Manuscripta Math. 82 (1994),207-226. B. Segre, Sulle Vn aventi pi`u di ∞n−k Sk, I and II, Rend. dell’Acad. Naz. Lincei, vol. V (1948), 193-157 and 217-273. F. Severi, Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e a suoi punti tripli apparenti Rend. Circ. Mat. Palermo II, 15 (1901), 377–401. F.L Zak, Tangents and Secants of Algebraic Varieties, Transl. Math. Monographs AMS, vol. 127, Providence, RI, 1993 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5bd88a9c-e3d0-434a-a675-3221b2fde0e4 | |
relation.isAuthorOfPublication.latestForDiscovery | 5bd88a9c-e3d0-434a-a675-3221b2fde0e4 |
Download
Original bundle
1 - 1 of 1