Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The universal rank-(n − 1) bundle on G(1, n) restricted to subvarieties

dc.contributor.authorArrondo Esteban, Enrique
dc.date.accessioned2023-06-20T18:43:09Z
dc.date.available2023-06-20T18:43:09Z
dc.date.issued1998
dc.description.abstractThe author has, in several articles, studied varieties in the Grassmannian G(k, n) of kplanes in projective n-space, that are projections from a variety in G(k,N). In the case k = 1 the varieties of dimension n−1 in G(1, n) that are projections from G(1,N) were studied by E. Arrondo and I. Sols [“On congruences of lines in the projective space”, M´em. Soc. Math. Fr., Nouv. S´er. 50 (1992; Zbl 0804.14016)] and solved for n = 3 by E. Arrondo [J. Algebr. Geom. 8, No. 1, 85-101 (1999; Zbl 0945.14030)]. In the paper under review the author studies the other extreme k = n−1, n−2. The case k = n−1 is solved completely, and in the case k = n−2 it is shown that if Y is a smooth variety of dimension s in G(1, n) whose dual Y in G(n − 2, n) is a non-trivial projection from G(n − 2, n + 1), then s = n − 1 and Y is completely classified. The methods are from classical projective geometry and based upon results by E. Rogora [Manuscr. Math. 82, No. 2, 207-226 (1994; Zbl 0812.14038)] and B. Segre.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21007
dc.identifier.issn0010-0757
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58419
dc.issue.number2-3
dc.journal.titleCollectanea mathematica
dc.language.isoeng
dc.page.final183
dc.page.initial173
dc.publisherPPU
dc.relation.projectIDPB93-0440-C03-01
dc.rights.accessRightsopen access
dc.subject.cdu514.144
dc.subject.keywordGrassmannians
dc.subject.keywordlinear normality
dc.subject.keywordprojections
dc.subject.keywordduality
dc.subject.ucmGeometría
dc.subject.unesco1204 Geometría
dc.titleThe universal rank-(n − 1) bundle on G(1, n) restricted to subvarieties
dc.typejournal article
dc.volume.number49
dcterms.referencesE. Arrondo, Projections of Grassmannians of lines and characterization of Veronese varieties, preprint (1997). E. Arrondo, M. Bertolini and C. Turrini, Classification of smooth congruences with a fundamental curve, pages 43-56 in Projective geometry with applications (ed. E. Ballico), Marcel Dekker, New York, 1994. E. Arrondo and I. Sols, On congruences of lines in the projective space, Soc. Math. France (M´em. 50), 1992. E. Rogora, Varieties with many lines, Manuscripta Math. 82 (1994),207-226. B. Segre, Sulle Vn aventi pi`u di ∞n−k Sk, I and II, Rend. dell’Acad. Naz. Lincei, vol. V (1948), 193-157 and 217-273. F. Severi, Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e a suoi punti tripli apparenti Rend. Circ. Mat. Palermo II, 15 (1901), 377–401. F.L Zak, Tangents and Secants of Algebraic Varieties, Transl. Math. Monographs AMS, vol. 127, Providence, RI, 1993
dspace.entity.typePublication
relation.isAuthorOfPublication5bd88a9c-e3d0-434a-a675-3221b2fde0e4
relation.isAuthorOfPublication.latestForDiscovery5bd88a9c-e3d0-434a-a675-3221b2fde0e4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
arrondo_theuniversal.pdf
Size:
110.67 KB
Format:
Adobe Portable Document Format

Collections